
 CS152 Computer Architecture and
Engineering

ISAs, Microprogramming and Pipelining

February 5,
2003

Assigned February 5 Problem Set #1 Due February 12

http://inst.eecs.berkeley.edu/~cs152/sp08

The problem sets are intended to help you learn the material, and we encourage you to
collaborate with other students and to ask questions in discussion sections and office hours to
understand the problems. However, each student must turn in their own solutions to the
problems.
The problem sets also provide essential background material for the quizzes. The problem sets
will be graded primarily on an effort basis, but if you do not work through the problem sets you
are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day
the problem sets are due to give you feedback. Homework assignments are due at the beginning
of class on the due date. Homework will not be accepted once solutions are handed out.

Problem 1: CISC, RISC, and Stack: Comparing ISAs
In this problem, your task is to compare three different ISAs. x86 is an extended accumulator,
CISC architecture with variable length instructions. MIPS64 is a load-store, RISC architecture
with fixed length instructions. We will also look at a simple stack-based ISA.

Problem 1.A CISC

Let us begin by considering the following C code:

int b; //a global variable

void multiplyByB(int a){
 int i, result;
 for(i = 0; i<b; i++){
 result=result+a;
 }
}

Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following
x86 instruction sequence. (On entry to this code, register %ecx contains i, and register %edx
contains result, and register %eax contains a. b is stored in memory at location 0x8049580)

xor %edx,%edx
xor %ecx,%ecx

 loop: cmp 0x8049580,%ecx
 jl L1
 jmp done
 L1: add %eax,%edx
 inc %ecx
 jmp loop
 done: ...

The meanings and instruction lengths of the instructions used above are given in the following
table. Registers are denoted with RSUBSCRIPT, register contents with <RSUBSCRIPT>.

Instruction Operation Length
add RDEST, RSRC RSRC ← <RSRC> + <RDST> 2 bytes
cmp imm32, RSRC2 Temp ← <RSRC2> - MEM[imm32] 6 bytes
inc RDEST RDEST ← <RDEST> + 1 1 byte
jmp label jump to the address specified by label 2 bytes
jl label if (SF≠OF)

 jump to the address specified by label
2 bytes

xor RDEST, RSRC RDEST ← RDEST ⊗ RSRC 2 bytes

Notice that the jump instruction jl (jump if less than) depends on SF and OF, which are status
flags. Status flags, also known as condition codes, are analogous to the condition register used in
the MIPS architecture. Status flags are set by the instruction preceding the jump, based on the
result of the computation. Some instructions, like the cmp instruction, perform a computation and

set status flags, but do not return any result. The meanings of the status flags are given in the
following table:

Name Purpose Condition Reported
OF Overflow Result exceeds positive or negative limit of number range
SF Sign Result is negative (less than zero)

How many bytes is the program? For the above x86 assembly code, how many bytes of
instructions need to be fetched if b = 10? Assuming 32-bit data values, how many bytes of data
memory need to be fetched? Stored?

Problem 1.B RISC

Translate each of the x86 instructions in the following table into one or more MIPS64
instructions. Place the L1 and loop labels where appropriate. You should use the minimum
number of instructions needed to translate each x86 instruction. Assume that upon entry, R1
contains b, R2 contains a, R3 contains i. R4 should receive result. If needed, use R5 as a
condition register, and R6, R7, etc., for temporaries. You should not need to use any floating
point registers or instructions in your code. A description of the MIPS64 instruction set
architecture can be found in Appendix B of Hennessy & Patterson. The authoritative source
would be: http://www.mips.com/products/resource-library/product-materials/mips-architecture/
x86 instruction label MIPS64 instruction sequence
xor %edx,%edx

xor %ecx,%ecx

cmp 0x8049580,%ecx

jl L1

jmp done

add %eax,%edx

inc %ecx

jmp loop

... done: ...

How many bytes is the MIPS64 program using your direct translation? How many bytes of
MIPS64 instructions need to be fetched for b = 10 using your direct translation? Assuming 32-bit
data values, how many bytes of data memory need to be fetched? Stored?

Problem 1.C Stack

In a stack architecture, all operations occur on top of the stack. Only push and pop access
memory, and all other instructions remove their operands from the stack and replace them with
the result. The hardware implementation we will assume for this problem set uses stack registers
for the top two entries; accesses that involve other stack positions (e.g., pushing or popping
something when the stack has more than two entries) use an extra memory reference. The table
below gives a subset of a simple stack-style instruction set. Assume each opcode is a single
byte. Labels, constants, and addresses require two bytes.

Example instruction Meaning
PUSH A push M[A] onto stack
POP A pop stack and place popped value in M[A]
ADD pop two values from the stack; ADD them; push result onto stack
SUB pop two values from the stack; SUBtract top value from the 2nd;

push result onto stack
ZERO zeroes out the value at top of stack
INC pop value from top of stack; increments value by one

push new value back on the stack
BEQZ label pop value from stack; if it’s zero, continue at label;

else, continue with next instruction
BNEZ label pop value from stack; if it’s not zero, continue at label;

else, continue with next instruction
GOTO label continue execution at location label

Translate the multiplyByB loop to the stack ISA. For uniformity, please use the same control
flow as in parts a and b. Assume that when we reach the loop, a is the only thing on the stack.
Assume b is still at address 0x8000 (to fit within a 2 byte address specifier).

How many bytes is your program? Using your stack translations from part (c), how many bytes
of stack instructions need to be fetched for b = 10? Assuming 32-bit data values, how many
bytes of data memory need to be fetched? Stored? If you could push and pop to/from a four-
entry register file rather than memory (the Java virtual machine does this), what would be the
resulting number of bytes fetched and stored?

Problem 1.D Conclusions

In just a few sentences, compare the three ISAs you have studied with respect to code size,
number of instructions fetched, and data memory traffic.

Problem 1.E Optimization

To get more practice with MIPS64, optimize the code from part B so that it can be expressed in
fewer instructions. There are solutions more efficient than simply translating each individual
x86 instruction as you did in part B. Your solution should contain commented assembly code, a
paragraph which explains your optimizations, and a short analysis of the savings you obtained.

Problem 2: Microprogramming and Bus-Based Architectures

In this problem, we explore microprogramming by writing microcode for the bus-based
implementation of the MIPS machine described in Handout #1 (Bus-Based MIPS
Implementation). Read the instruction fetch microcode in Table H1-3 which was reproduced at
the end of this problem (Worksheet M1-1) for readers’ convenience. Make sure that you
understand how different types of data and control transfers are achieved by setting the
appropriate control signals before attempting this problem.
In order to further simplify this problem, ignore the busy signal, and assume that the memory is
as fast as the register file.

The final solution should be elegant and efficient (e.g. number of new states needed, amount of
new hardware added).

Problem 2.A Implementing Memory-to-Memory Add

For this problem, you are to implement a new memory-memory add operation. The new
instruction has the following format:

ADDm rd, rs, rt
ADDm performs the following operation:

M[rd] ← M[rs] + M[rt]

Fill in Worksheet M1-1 with the microcode for ADDm. Use don’t cares (*) for fields where it is
safe to use don’t cares. Study the hardware description well, and make sure all your
microinstructions are legal.

Please comment your code clearly. If the pseudo-code for a line does not fit in the space
provided, or if you have additional comments, you may write in the margins as long as you do it
neatly. Your code should exhibit “clean” behavior and not modify any registers (except rd) in the
course of executing the instruction.

Finally, make sure that the instruction fetches the next instruction (i.e., by doing a microbranch
to FETCH0 as discussed above).

Problem 2.B Implementing DBNEZ Instruction

DBNEZ stands for Decrease Branch Not Equal Zero. This instruction uses the same encoding as
conditional branch instructions on MIPS:

6 5 5 16
opcode rs Offset

DBNEZ decrements register rs by 1, writes the result back to rs, and branches to (PC+4)+offset,
if result in rs is not equal to 0. Offset is sign extended to allow for backward branches. This
instruction can be used for efficiently implementing loops.

Your task is to fill out Worksheet M1-2 for DBNEZ instruction. You should try to optimize your
implementation for the minimal number of cycles necessary and for which signals can be set to
don’t-cares. You do not have to worry about the busy signal.

(Note that the microcode for the fetch stage has changed slightly from the one in the Problem
M1.4.A, to allow for more efficient implementation of some instructions.)

Problem 2.C Instruction Execution Times
How many cycles does it take to execute the following instructions in the microcoded MIPS
machine? Use the states and control points from MIPS-Controller-2 in Lecture 4 and assume
Memory will not assert its busy signal.

Instruction Cycles
SUB R3,R2,R1
SUBI R2,R1,#4
SW R1,0(R2)
BEQZ R1,label # (R1 == 0)
BNEZ R1,label # (R1 != 0)
J label
JR R1
JAL label
JALR R1

Which instruction takes the most cycles to execute? Which instruction takes the fewest cycles to
execute?

Problem 2.D Exponentiation

Ben Bitdiddle needs to compute the power function for small numbers. Realizing there is no
multiply instruction in the microcoded MIPS machine, he uses the following code to calculate
the result when an unsigned number m is raised to the nth power, where n is another unsigned
number.

 if (m == 0) {
 result = 0;
 }
 else {
 result = 1;
 i = 0;

 while (i < n) {
 temp = result;
 j = 1;
 while (j < m) {
 result += temp;
 j++;
 }
 i++;
 }
 }

The variables i, j, m, n, temp, and result are unsigned 32-bit values.

Write the MIPS assembly that implements Ben’s code. Use only the MIPS instructions that can
be executed on the microcoded MIPS machine (ALU, ALUi, LW, SW, J, JAL, JR, JALR,
BEQZ, and BNEZ). The microcoded MIPS machine does not have branch delay slots. Use R1
for m, R2 for n, and R3 for result. At the end of your code, only R3 must have the correct
value. The values of all other registers do not have to be preserved.

How many MIPS instructions are executed to calculate the power function? How many cycles
does it take to calculate the power function? Again, use the states and control points from MIPS-
Controller-2 and assume Memory will not assert its busy signal.

m, n Instructions Cycles
0, 1
1, 0
2, 2
3, 4
M, N

State PseudoCode ld

IR
Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

ld
MA

Mem
W

en
Mem

Ex
Sel

en
Imm

µB
r

Next State

FETCH0: MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N *

 PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

0 * * 0 * * * 0 * * 0 * 0 J FETCH0

ADDM0:

Worksheet M1-2

State PseudoCode ld

IR
Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

Ld
MA

Mem
W

en
Mem

Ex
Sel

en
Imm

µB
r

Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *

 PC <- A+4;
B <- A+4

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH0

DBNEZ:

Worksheet M1-2

Problem 3: A 5-Stage Pipeline with an Additional Adder

In this problem we consider a new datapath to improve the performance of the fully-bypassed 5-
stage 32-bit MIPS processor datapath given in Lecture 4. In the new datapath the ALU the
Execute stage is replaced by a simple adder and the original ALU is moved from the Execute
stage to the Memory stage (See Figure 3-A). The adder in the 3rd stage (formerly Execute) is
used only for address calculations involving load/store instructions. For all other instructions,
the data is simply forwarded to the 4th stage.

The ALU will now run in parallel with the data memory in the 4th stage of the pipeline (formerly
Mem). During a load/store instruction, the ALU is inactive, while the data memory is inactive
during the ALU instructions. In this problem we will ignore jump and branch instructions.

Problem 3.A Elimination of a hazard

Give an example sequence of MIPS instructions (five or fewer instructions) that would cause a
pipeline bubble in the original datapath, but not in the new datapath.

Problem 3.B New hazard

Give an example sequence of MIPS instructions (five or fewer instructions) that would cause a
pipeline bubble in the new datapath, but not in the original datapath.

Problem 3.C Comparison

Compare the advantages and disadvantages of the new datapath. Which one would you
recommend? Justify your choice.

Figure 3-A. 5-Stage Pipeline with an Additional Adder

PC
 A

Y

R M
D

1

addr
ins
t Inst

Memory

Im
m
Ext

add

rd1

GPR
s

rs1
rs2

ws
wd rd2

we

wdat
a

addr

wdata

rdata
Data
Memory

we

A
2

ALU

B
2

B

M
D

2

Writeback to
register file

ALU execution and
memory access

Address
calculation

Instruction decode and
register read

Instruction
fetch

WB EX/MEM AC ID IF

IR

Problem 3.D Datapath Improvement

Consider a MIPS ISA that only supports register indirect addressing, i.e. has no
displacement (base+offset) addressing mode. Assuming the new machine only had to
support this ISA, how could the datapath be improved? Draw the new datapath showing
your design. (You do not have to show everything -- just the important features like
pipeline registers, major components, major connections, etc.) Compare the hazards in
this new datapath with the hazards in datapaths shown in Figure 3-A and the original
datapath in 4. Justify the new datapath.

Problem 3.E Displacement Addressing Synthesizing

If the MIPS ISA did not have displacement addressing, what would programmers do?
Could you still write the same programs as before? Explain.

Problem 3.F Jumps and Branches

Now we will consider jumps and branches for the pipeline shown in part A of this
problem. Assume that the branch target calculation is performed in the Instruction
Decode stage. In what pipeline stages can you put the logic to determine whether a
conditional branch is taken? (don’t worry about duplicating logic) What are the
advantages and disadvantages between the different choices? For each choice, consider
the number of cycles for the branch delay, any additional stall conditions, and any
potential changes in the clock period.

