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The problem sets are intended to help you learn the material, and we encourage you to 
collaborate with other students and to ask questions in discussion sections and office hours to 
understand the problems. However, each student must turn in their own solutions to the 
problems. 
The problem sets also provide essential background material for the quizzes. The problem sets 
will be graded primarily on an effort basis, but if you do not work through the problem sets you 
are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day 
the problem sets are due to give you feedback.  Homework assignments are due at the beginning 
of class on the due date. Homework will not be accepted once solutions are handed out. 



Problem 1: CISC, RISC, and Stack: Comparing ISAs 
In this problem, your task is to compare three different ISAs.  x86 is an extended accumulator, 
CISC architecture with variable length instructions.  MIPS64 is a load-store, RISC architecture 
with fixed length instructions.  We will also look at a simple stack-based ISA. 
 
Problem 1.A CISC 

 
Let us begin by considering the following C code: 
 
int b;  //a global variable 
 
void multiplyByB(int a){ 
  int i, result; 
  for(i = 0; i<b; i++){ 
    result=result+a; 
  } 
} 
 
Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following 
x86 instruction sequence.  (On entry to this code, register %ecx contains i, and register %edx 
contains result, and register %eax contains a.  b is stored in memory at location 0x8049580) 
 

xor    %edx,%edx 
xor    %ecx,%ecx 

 loop:      cmp    0x8049580,%ecx 
   jl     L1  
   jmp    done  
 L1:  add    %eax,%edx 
   inc    %ecx 
   jmp    loop  
 done:    ... 
 
The meanings and instruction lengths of the instructions used above are given in the following 
table. Registers are denoted with RSUBSCRIPT, register contents with <RSUBSCRIPT>. 
  

Instruction Operation Length 
add RDEST, RSRC RSRC ← <RSRC> + <RDST> 2 bytes 
cmp imm32, RSRC2  Temp ← <RSRC2> - MEM[imm32] 6 bytes 
inc RDEST RDEST ← <RDEST> + 1 1 byte 
jmp label jump to the address specified by label 2 bytes 
jl label if (SF≠OF) 

  jump to the address specified by label 
2 bytes 

xor RDEST, RSRC  RDEST ← RDEST ⊗ RSRC 2 bytes 
 
Notice that the jump instruction jl (jump if less than) depends on SF and OF, which are status 
flags. Status flags, also known as condition codes, are analogous to the condition register used in 
the MIPS architecture. Status flags are set by the instruction preceding the jump, based on the 
result of the computation. Some instructions, like the cmp instruction, perform a computation and 



set status flags, but do not return any result. The meanings of the status flags are given in the 
following table: 
 

Name Purpose Condition Reported 
OF Overflow Result exceeds positive or negative limit of number range 
SF Sign Result is negative (less than zero) 

 
How many bytes is the program?  For the above x86 assembly code, how many bytes of 
instructions need to be fetched if b = 10?  Assuming 32-bit data values, how many bytes of data 
memory need to be fetched? Stored? 
 
Problem 1.B RISC 

 
Translate each of the x86 instructions in the following table into one or more MIPS64 
instructions.  Place the L1 and loop labels where appropriate.  You should use the minimum 
number of instructions needed to translate each x86 instruction. Assume that upon entry, R1 
contains b, R2 contains a, R3 contains i.  R4 should receive result. If needed, use R5 as a 
condition register, and R6, R7, etc., for temporaries. You should not need to use any floating 
point registers or instructions in your code.  A description of the MIPS64 instruction set 
architecture can be found in Appendix B of Hennessy & Patterson.  The authoritative source 
would be: http://www.mips.com/products/resource-library/product-materials/mips-architecture/ 
x86 instruction label MIPS64 instruction sequence 
xor    %edx,%edx 
          

  
 
 

xor    %ecx,%ecx 
          

  
 
 

cmp    0x8049580,%ecx   
 
 

jl     L1  
 

  
 
 

jmp    done   
 
 

add    %eax,%edx   
 
 

inc    %ecx 
 

  
 
 

jmp    loop   
 
 

... done: ... 

 
How many bytes is the MIPS64 program using your direct translation?  How many bytes of 
MIPS64 instructions need to be fetched for b = 10 using your direct translation? Assuming 32-bit 
data values, how many bytes of data memory need to be fetched? Stored? 



 
Problem 1.C Stack 

 
In a stack architecture, all operations occur on top of the stack.  Only push and pop access 
memory, and all other instructions remove their operands from the stack and replace them with 
the result.  The hardware implementation we will assume for this problem set uses stack registers 
for the top two entries; accesses that involve other stack positions (e.g., pushing or popping 
something when the stack has more than two entries) use an extra memory reference.  The table 
below gives a subset of a simple stack-style instruction set.  Assume each opcode is a single 
byte.  Labels, constants, and addresses require two bytes. 
 
Example instruction Meaning 
PUSH A push M[A] onto stack 
POP A pop stack and place popped value in M[A] 
ADD pop two values from the stack; ADD them; push result onto stack 
SUB pop two values from the stack; SUBtract top value from the 2nd; 

push result onto stack 
ZERO zeroes out the value at top of stack 
INC pop value from top of stack; increments value by one 

push new value back on the stack  
BEQZ label pop value from stack; if it’s zero, continue at label; 

else, continue with next instruction 
BNEZ label pop value from stack; if it’s not zero, continue at label; 

else, continue with next instruction 
GOTO label continue execution at location label 

 
 
Translate the multiplyByB loop to the stack ISA.  For uniformity, please use the same control 
flow as in parts a and b.  Assume that when we reach the loop, a is the only thing on the stack.  
Assume b is still at address 0x8000 (to fit within a 2 byte address specifier). 
 
How many bytes is your program?  Using your stack translations from part (c), how many bytes 
of stack instructions need to be fetched for b = 10? Assuming 32-bit data values, how many 
bytes of data memory need to be fetched? Stored?  If you could push and pop to/from a four-
entry register file rather than memory (the Java virtual machine does this), what would be the 
resulting number of bytes fetched and stored? 
 
 
 
 
 
 
 
 
 
 



Problem 1.D Conclusions 
 
In just a few sentences, compare the three ISAs you have studied with respect to code size, 
number of instructions fetched, and data memory traffic.    
 
 
Problem 1.E Optimization 

 
To get more practice with MIPS64, optimize the code from part B so that it can be expressed in 
fewer instructions.  There are solutions more efficient than simply translating each individual 
x86 instruction as you did in part B. Your solution should contain commented assembly code, a 
paragraph which explains your optimizations, and a short analysis of the savings you obtained. 
 
 



Problem 2:  Microprogramming and Bus-Based Architectures  
 
In this problem, we explore microprogramming by writing microcode for the bus-based 
implementation of the MIPS machine described in Handout #1 (Bus-Based MIPS 
Implementation). Read the instruction fetch microcode in Table H1-3 which was reproduced at 
the end of this problem (Worksheet M1-1) for readers’ convenience.  Make sure that you 
understand how different types of data and control transfers are achieved by setting the 
appropriate control signals before attempting this problem. 
In order to further simplify this problem, ignore the busy signal, and assume that the memory is 
as fast as the register file. 
 

The final solution should be elegant and efficient (e.g. number of new states needed, amount of 
new hardware added). 

 
Problem 2.A Implementing Memory-to-Memory Add 

 
For this problem, you are to implement a new memory-memory add operation.  The new 
instruction has the following format: 

ADDm rd, rs, rt 
ADDm performs the following operation: 

M[rd] ←  M[rs] + M[rt]   

Fill in Worksheet M1-1 with the microcode for ADDm.  Use don’t cares (*) for fields where it is 
safe to use don’t cares.  Study the hardware description well, and make sure all your 
microinstructions are legal. 

Please comment your code clearly. If the pseudo-code for a line does not fit in the space 
provided, or if you have additional comments, you may write in the margins as long as you do it 
neatly.  Your code should exhibit “clean” behavior and not modify any registers (except rd) in the 
course of executing the instruction. 

Finally, make sure that the instruction fetches the next instruction (i.e., by doing a microbranch 
to FETCH0 as discussed above). 



 
Problem 2.B Implementing DBNEZ Instruction 

 
DBNEZ stands for Decrease Branch Not Equal Zero. This instruction uses the same encoding as 
conditional branch instructions on MIPS: 
 

6 5 5 16 
opcode rs  Offset 

 
DBNEZ decrements register rs by 1, writes the result back to rs, and branches to (PC+4)+offset, 
if result in rs is not equal to 0. Offset is sign extended to allow for backward branches. This 
instruction can be used for efficiently implementing loops. 
 
Your task is to fill out Worksheet M1-2 for DBNEZ instruction. You should try to optimize your 
implementation for the minimal number of cycles necessary and for which signals can be set to 
don’t-cares. You do not have to worry about the busy signal. 
 

(Note that the microcode for the fetch stage has changed slightly from the one in the Problem 
M1.4.A, to allow for more efficient implementation of some instructions.)  
 
 

Problem 2.C Instruction Execution Times 
How many cycles does it take to execute the following instructions in the microcoded MIPS 
machine?  Use the states and control points from MIPS-Controller-2 in Lecture 4 and assume 
Memory will not assert its busy signal. 
 

Instruction Cycles 
SUB  R3,R2,R1  
SUBI R2,R1,#4  
SW   R1,0(R2)  
BEQZ R1,label  # (R1 == 0)  
BNEZ R1,label  # (R1 != 0)  
J    label  
JR   R1  
JAL  label  
JALR R1  

 
Which instruction takes the most cycles to execute?  Which instruction takes the fewest cycles to 
execute? 
 



 
Problem 2.D Exponentiation 

Ben Bitdiddle needs to compute the power function for small numbers.  Realizing there is no 
multiply instruction in the microcoded MIPS machine, he uses the following code to calculate 
the result when an unsigned number m is raised to the nth power, where n is another unsigned 
number. 
 
    if (m == 0) { 
        result = 0; 
    } 
    else { 
        result = 1; 
        i = 0; 
 
        while (i < n) { 
            temp = result; 
            j = 1; 
            while (j < m) { 
                result += temp; 
                j++; 
            } 
            i++; 
        } 
    } 
 
The variables i, j, m, n, temp, and result are unsigned 32-bit values. 
 
Write the MIPS assembly that implements Ben’s code.  Use only the MIPS instructions that can 
be executed on the microcoded MIPS machine (ALU, ALUi, LW, SW, J, JAL, JR, JALR, 
BEQZ, and BNEZ).  The microcoded MIPS machine does not have branch delay slots.  Use R1 
for m, R2 for n, and R3 for result.  At the end of your code, only R3 must have the correct 
value.  The values of all other registers do not have to be preserved. 
 
How many MIPS instructions are executed to calculate the power function?  How many cycles 
does it take to calculate the power function?  Again, use the states and control points from MIPS-
Controller-2 and assume Memory will not assert its busy signal. 
  

m, n Instructions Cycles 
0, 1   
1, 0   
2, 2   
3, 4   
M, N   
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Problem 3:  A 5-Stage Pipeline with an Additional Adder  
 
In this problem we consider a new datapath to improve the performance of the fully-bypassed 5-
stage 32-bit MIPS processor datapath given in Lecture 4. In the new datapath the ALU the 
Execute stage is replaced by a simple adder and the original ALU is moved from the Execute 
stage to the Memory stage (See Figure 3-A).  The adder in the 3rd stage (formerly Execute) is 
used only for address calculations involving load/store instructions.  For all other instructions, 
the data is simply forwarded to the 4th stage. 
 
The ALU will now run in parallel with the data memory in the 4th stage of the pipeline (formerly 
Mem).  During a load/store instruction, the ALU is inactive, while the data memory is inactive 
during the ALU instructions.  In this problem we will ignore jump and branch instructions. 
 
Problem 3.A Elimination of a hazard 

 
Give an example sequence of MIPS instructions (five or fewer instructions) that would cause a 
pipeline bubble in the original datapath, but not in the new datapath.   
 
Problem 3.B New hazard           

 
Give an example sequence of MIPS instructions (five or fewer instructions) that would cause a 
pipeline bubble in the new datapath, but not in the original datapath.   
 
Problem 3.C Comparison           

 
Compare the advantages and disadvantages of the new datapath. Which one would you 
recommend? Justify your choice. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-A. 5-Stage Pipeline with an Additional Adder 
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Problem 3.D Datapath Improvement 

Consider a MIPS ISA that only supports register indirect addressing, i.e. has no 
displacement (base+offset) addressing mode.  Assuming the new machine only had to 
support this ISA, how could the datapath be improved?  Draw the new datapath showing 
your design.  (You do not have to show everything -- just the important features like 
pipeline registers, major components, major connections, etc.)  Compare the hazards in 
this new datapath with the hazards in datapaths shown in Figure 3-A and the original 
datapath in 4.  Justify the new datapath. 
 
Problem 3.E Displacement Addressing Synthesizing 

If the MIPS ISA did not have displacement addressing, what would programmers do?  
Could you still write the same programs as before? Explain. 
 
Problem 3.F Jumps and Branches 

Now we will consider jumps and branches for the pipeline shown in part A of this 
problem.  Assume that the branch target calculation is performed in the Instruction 
Decode stage.  In what pipeline stages can you put the logic to determine whether a 
conditional branch is taken?  (don’t worry about duplicating logic)  What are the 
advantages and disadvantages between the different choices?  For each choice, consider 
the number of cycles for the branch delay, any additional stall conditions, and any 
potential changes in the clock period. 
 


