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The problem sets are intended to help you learn the material, and we encourage you to 
collaborate with other students and to ask questions in discussion sections and office 
hours to understand the problems. However, each student must turn in their own solutions 
to the problems. 
The problem sets also provide essential background material for the quizzes. The 
problem sets will be graded primarily on an effort basis, but if you do not work through 
the problem sets you are unlikely to succeed at the quizzes! We will distribute solutions 
to the problem sets on the day the problem sets are due to give you feedback.  Homework 
assignments are due at the beginning of class on the due date. Homework will not be 
accepted once solutions are handed out. 
 
This material will be on Quiz 3, not Quiz 2. 



Problem 3.1: Virtual Memory Bits  
 
This problem requires the knowledge of Handout #3 (Virtual Memory Implementation) 
and Lecture 9.  Please, read these materials before answering the following questions. 
 
In this problem we consider simple virtual memory enhancements.  
 
Problem 3.1.A  

 
Whenever a TLB entry is replaced we write the entire entry back to the page table.  Ben 
thinks this is a waste of memory bandwidth.  He thinks only a few of the bits need to be 
written back. For each of the bits explain why or why not they need to be written back to 
the page table.   
 
With this in mind, we will see how we can minimize the number of bits we actually need 
in each TLB entry throughout the rest of the problem. 
 
Problem 3.1.B  

 

Ben does not like the TLB design.  He thinks the TLB Entry Valid bit should be dropped 
and the kernel software should be changed to ensure that all TLB entries are always valid.  
Is this a good idea?  Explain the advantages and disadvantages of such a design. 

 
Problem 3.1.C  

 
Alyssa got wind of Ben’s idea and suggests a different scheme to eliminate one of the 
valid bits.  She thinks the page table entry valid and TLB Entry Valid bits can be 
combined into a single bit.   
 
On a refill this combined valid bit will take the value that the page table entry valid bit 
had.  A TLB entry is invalidated by writing it back to the page table and setting the 
combined valid bit in the TLB entry to invalid.   

 
How does the kernel software need to change to make such a scheme work?  How do the 
exceptions that the TLB produces change? 
 
 
 
 
 
 
 
  



Problem 3.1.D  
 
Now, Bud Jet jumps into the game.  He wants to keep the TLB Entry Valid bit.  
However, there is no way he is going to have two valid bits in each TLB entry (one for 
the TLB entry one for the page table entry).  Thus, he decides to drop the page table entry 
valid bit from the TLB entry.   
 
How does the kernel software need to change to make this work well?  How do the 
exceptions that the TLB produces change?   
 
Problem 3.1.E  

 
Compare your answers to Problem 3.1.C and 3.1.D.  What scheme will lead to better 
performance? 

 
Problem 3.1.F  

 
How about the R bit?  Can we remove them from the TLB entry without significantly 
impacting performance?  Explain briefly.  
 
Problem 3.1.G  

 
The processor has a kernel (supervisor) mode bit.  Whenever kernel software executes the 
bit is set.  When user code executes the bit is not set.  Parts of the user’s virtual address 
space are only accessible to the kernel.  The supervisor bit in the page table is used to 
protect this region—an exception is raised if the user tries to access a page that has the 
supervisor bit set. 
 
Bud Jet is on a roll and he decides to eliminate the supervisor bit from each TLB entry.  
Explain how the kernel software needs to change so that we still have the protection 
mechanism and the kernel can still access these pages through the virtual memory 
system. 
 
Problem 3.1.H  

 
Alyssa P. Hacker thinks Ben and Bud are being a little picky about these bits, but has 
devised a scheme where the TLB entry does not need the M bit or the U bit.  It works as 
follows.  If a TLB miss occurs due to a load, then the page table entry is read from 
memory and placed in the TLB.  However, in this case the W bit will always be set to 0.  
Provide the details of how the rest of the scheme works (what happens during a store, 
when do the entries need to be written back to memory, when are the U and M bits 
modified in the page table, etc.).  

 



 Problem 3.2:  Page Size and TLBs  
 
This problem requires the knowledge of Handout #3 (Virtual Memory Implementation) 
and Lecture 10.  Please, read these materials before answering the following questions. 
 
Assume that we use a hierarchical page table described in Handout #3. 

 
The processor has a data TLB with 64 entries, and each entry can map either a 4KB page 
or a 4MB page.  After a TLB miss, a hardware engine walks the page table to reload the 
TLB.  The TLB uses a first-in/first-out (FIFO) replacement policy.  
 
We will evaluate the memory usage and execution of the following program which adds 
the elements from two 1MB arrays and stores the results in a third 1MB array (note that, 
1MB = 1,048,576 Bytes): 

 
We assume the A, B, and C arrays are allocated in a contiguous 3MB region of physical 
memory.  We will consider two possible virtual memory mappings: 
• 4KB: the arrays are mapped using 768 4KB pages (each array uses 256 pages). 
• 4MB: the arrays are mapped using a single 4MB page. 
 
For the following questions, assume that the above program is the only process in the 
system, and ignore any instruction memory or operating system overheads.  Assume that 
the arrays are aligned in memory to minimize the number of page table entries needed.   

byte A[1048576]; // 1MB array  
byte B[1048576]; // 1MB array  
byte C[1048576]; // 1MB array  
 
for(int i=0; i<1048576; i++) 
  C[i] = A[i] + B[i]; 



 

Problem 3.2.A  
 
This is the breakdown of a virtual address which maps to a 4KB page: 

 
Show the corresponding breakdown of a virtual address which maps to a 4MB page.  
Include the field names and bit ranges in your answer. 

 
 
 

 

 

Problem 3.2.B Page Table Overhead 
 
We define page table overhead (PTO) as: 
 

Physical memory that is allocated to page tables PTO = 
Physical memory that is allocated to data pages 

 
For the given program, what is the PTO for each of the two mappings? 
 

 PTO4KB = 
 

 
 PTO4MB = 
 

 

 

43 0 

L1 index 
33 43 

L2 index 
22 32 

L3 index 
12 21 

Page Offset 
0 11 

11 bits 11 bits 10 bits 12 bits 



 

Problem 3.2.C Page Fragmentation Overhead 
 
We define page fragmentation overhead (PFO) as: 
 

Physical memory that is allocated to data pages but is never accessed PFO = 
Physical memory that is allocated to data pages and is accessed 

 
For the given program, what is the PFO for each of the two mappings? 
 

 PFO4KB = 
 

 
 PFO4MB = 
 

 

Problem 3.2.D  
 
Consider the execution of the given program, assuming that the data TLB is initially 
empty.  For each of the two mappings, how many TLB misses occur, and how many page 
table memory references are required per miss to reload the TLB? 
 

 
Data TLB misses 

Page table memory 
references (per miss) 

4KB: 
  

4MB: 
  

 

Problem 3.2.E  
 
Which of the following is the best estimate for how much longer the program takes to 
execute with the 4KB page mapping compared to the 4MB page mapping? 
Circle one choice and briefly explain your answer (about one sentence). 
 

1.01×  10×  1,000×  1,000,000×  
 



Problem 3.3: 64-bit Virtual Memory 
 
This problem examines page tables in the context of processors with a 64-bit addressing. 
 
Problem 3.3.A Single level page tables 

 
For a computer with 64-bit virtual addresses, how large is the page table if only a single-
level page table is used? Assume that each page is 4KB, that each page table entry is 8 
bytes, and that the processor is byte-addressable. 
 
Problem 3.3.B Let’s be practical 

 
Many current implementations of 64-bit ISAs implement only part of the large virtual 
address space. One way to do this is to segment the virtual address space into three parts 
as shown below: one used for stack, one used for code and heap data, and the third one 
unused.  
 
 
 
 
 
 
 
 
 
 
 
 
 
A special circuit is used to detect whether the top eight bits of an address are all zeros or 
all ones before the address is sent to the virtual memory system. If they are not all equal, 
an invalid virtual memory address trap is raised. This scheme in effect removes the top 
seven bits from the virtual memory address, but retains a memory layout that will be 
compatible with future designs that implement a larger virtual address space.  

 

The MIPS R10000 does something similar.  Because a 64-bit address is unnecessarily 
large, only the low 44 address bits are translated. This also reduces the cost of TLB and 
cache tag arrays.  The high two virtual address bits (bits 63:62) select between user, 
supervisor, and kernel address spaces. The intermediate address bits (61:44) must either 
be all zeros or all ones, depending on the address region.  
 

Reserved for Code and Heap 

Reserved for Stack 
0xFFFFFFFFFFFFFFFF 

0xFF00000000000000 

0x00FFFFFFFFFFFFFF 

0x0000000000000000 

Unused 



How large is a single-level page table that would support MIPS R10000 addresses?  
Assume that each page is 4KB, that each page table entry is 8 bytes, and that the 
processor is byte-addressable. 
 
Problem 3.3.C Page table overhead 

 
A three-level hierarchical page table can be used to reduce the page table size.  Suppose 
we break up the 44-bit virtual address (VA) as follows:  
 

VA[43:33] VA[32:22] VA[21:12] VA[11:0] 
1st level index 2nd level index 3rd level index Page offset 

 
If page table overhead is defined as (in bytes): 
 

                   PHYSICAL MEMORY USED BY PAGE TABLES FOR A USER PROCESS              

 

 PHYSICAL MEMORY USED BY THE USER CODE, HEAP, AND STACK  

 
 
Remember that a complete page table page (1024 or 2048 PTEs) is allocated even if only 
one PTE is used. Assume a large enough physical memory that no pages are ever 
swapped to disk.  Use 64-bit PTEs.  What is the smallest possible page table overhead for 
the three-level hierarchical scheme? 
 
Assume that once a user page is allocated in memory, the whole page is considered to be 
useful.  What is the largest possible page table overhead for the three-level hierarchical 
scheme?   
 
Problem 3.3.D PTE Overhead 

 
The MIPS R10000 uses a 40 bit physical address.  The physical translation section of the 
TLB contains the physical page number (also known as PFN), one “valid,” one “dirty,” 
and three “cache status” bits.    
 
What is the minimum size of a PTE assuming all pages are 4KB?   
 
MIPS/Linux stores each PTE in a 64 bit word.  How many bits are wasted if it uses the 
minimum size you have just calculated?   It turns out that some of the “wasted” space is recovered 
by the OS to do bookkeeping, but not much.   
 


