
C152 Laboratory Exercise 3

Professor: Krste Asanovic
TA: Christopher Celio

Department of Electrical Engineering & Computer Science
University of California, Berkeley

March 7, 2011

1 Introduction and goals

The goal of this laboratory assignment is to allow you to conduct some simple virtual experi-
ments in the Simics simulation environment. Using the Simics Microarchitectural Interface and
an out–of–order execution processor model, you will collect statistics and make some architectural
recommendations based on the results.

The lab has two sections, a directed portion and an open–ended portion. Everyone will do the
directed portion the same way, and grades will be assigned based on correctness. The open–ended
portion will allow you to pursue more creative investigations, and your grade will be based on the
effort made to complete the task or the arguments you provide in support of your ideas.

Students are encouraged to discuss solutions to the lab assignments with other students, but
must run through the directed portion of the lab by themselves and turn in their own lab report.
For the open-ended portion of each lab, students can work individually or in groups of two or
three. Any open-ended lab assignment completed as a group should be written up and handed in
separately. Students are free to take part in different groups for different lab assignments.

You are only required to do one of the open ended assignments. These assignments are in
general starting points or suggestions. Alternatively, you can propose and complete your own open
ended project as long as it is sufficiently rigorous. If you feel uncertain about the rigor of a proposal,
feel free to consult the TA or professor.

It is also important to stress that how concise the report is and how the data is presented will
be taken into account when grading. Problems usually are specific about what statistics they want,
so there is no need to give them all. Tables and especially graphs are much more efficient and
effective ways to communicate data.

This lab assumes you have completed the earlier laboratory assignments. However, we will
re-include all the relevant files from past labs in this lab’s distribution bundle for your convenience.
Furthermore, we will assume that you remember all the commands used in earlier labs for controlling
Simics simulation. If you feel any confusion about these points, feel free to consult the first lab
guide or the Simics User Guide.

1.1 Simics MAI Overview

The Simics simulator by default assumes that every instruction completes instantaneously in a
single cycle. This allows for speedy simulations that are useful for software/firmware correctness

1



testing. As we saw in previous labs, Simics can be extended with memory hierarchy timing modules
to model realistic performance effects of a user-defined memory hierarchy. These extensions increase
simulation realism at the expense of simulation speed.

In this lab, we will make use of further extensions which allow an instruction’s execution to
be delayed according to a microarchitectural model. This model can be programmed to simulate
the timing behavior of the instructions as if they were being run on an in-order or out-of-order
execution (OoO) processor. Microarchitectural models interact with Simics execution via the Micro-
Architectural Interface.

Microarchitecturally accurate models are coded using C or the Simics Device Modeling Lan-
guage. For this lab, we will use MAI modules included with Simics, rather than code our own.
Specifically, we will use the MAI extension for the Sunfire UltraSPARC II processor (the Bagle
machine). This extension allows for out-of-order execution, branch target speculation, and includes
a memory hierarchy as well.

Several new variables are exposed to the user when working with MA models. The user can
configure the width of the pipeline (the number of instructions allowed to fetch, execute, retire or
commit in a single cycle), the size of the reorder buffer, whether instructions must retire in-order,
and several memory hierarchy parameters related to OoO. The variables will be discussed as they
are needed in the following lab sections.

When running in MA mode, Simics tracks dependencies of several varieties (register, control
and memory) that exist in the instruction stream. It then places the instructions in a structure
called an instruction tree — for the machine we are simulating, the instruction tree tracks the same
state as the reorder buffer and associated structures would in an actual processor. This tree can be
examined with the command print-instruction-queue. A load–store queue is also simulated.

The Simics microarchitecture simulator we will use in this lab speculates on branches by filling
the instruction tree with instructions from both branch paths. Speculated instructions may only
commit when their preceding branches have resolved. This behavior is notably different from the
actual execution of many real out-of-order processors, but produces similar performance effects.
The simulator we are using speculatively predicts branch target addresses.

The execution of instructions is divided into 6 stages (init, fetch, decode, execute, retire, commit)
and instructions are only allowed to advance to the next stage when all applicable dependencies
have been satisfied. In this way, instructions are allowed to execute out of order but may accumulate
a multi-cycle delay appropriate to the underlying microarchitecture of the simulated processor.

A point worthy of note is that steps and cycles are no longer necessarily equivalent. A step
occurs whenever an instruction commits. Advancing the simulation by one cycle may mean that
multiple steps occur, or that none do. Similarly, advancing the simulation by one instruction may
pause the simulation in the middle of a cycle. For this reason, it is advisable to use the step-cycle
or run-cycles command to advance simulation, and then simply measure the number of steps that
have occurred.

See the Simics MAI User Guide included with this lab for more information about any of these
topics.

1.2 Graded Items

You will turn a hard copy of your results to the professor or TA. Please label each section of the
results clearly. The following items need to be turned in for evaluation:

2



1. Problem 2.3: IPC statistics for each benchmark and answers

2. Problem 2.4: IPC statistics for all configurations and answers

3. Problem 2.5: IPC statistics for all memory configurations and answers

4. Problem 3.1/3.2/3.3 modifications and evaluations (include source code if required)

2 Directed Portion

2.1 General methodology

While you must ensure you are capturing a representative portion of the program’s execution, you
can measure instruction execution statistics whenever you like with ptime or logging.

For maximum efficiency, you should make sure that you are making use of all three operation
modes of Simics. You only want to run in the slow, highly detailed modes when it is necessary to
do so in order to collect accurate data.

The general methodology of this lab is:

1. Start Simics in fast mode, but use an MA-extended machine

2. Mount the host file system and load the appropriate files

3. Checkpoint the system

4. Restart Simics in stall mode and begin executing benchmark code to warm the caches

5. Checkpoint the system

6. Restart Simics in MA mode and collect OoO data

During this process Simics may report errors depending on which mode you are using and
whether or not you are starting from a checkpointed simulation. If your simulation still runs after
an error is reported, then simply disregard it.

You can use any of the t7400-{1,2,3,...,12}.eecs instructional servers to complete this lab
assignment. Do not wait until the night before the assignment is due, because you will face resource
contention that may significantly increase the time it takes to complete the assignment.

2.2 Setup

Start Simics in -fast mode, using the targets/sunfire/bagel-ma-common.simics script. Make
sure the host filesystem or workspace is mounted and that the benchmark binaries and input files
are copied into the target machine. To save time in the following sections, you should create a
checkpoint that has all the files loaded, and probably a checkpoint at each of the initial magic
breakpoints in the benchmark programs. Unfortunately, while the target machine being simulated
is the same as in some previous labs, the underlying Simics modules used in the simulation are
different (they use the MAI), so you will not be able to use checkpoints created in past labs.

3



2.3 Collecting IPC statistics using the MAI

In this section you will collect information on the instruction level parallelism inherent to the
benchmark programs. You will do this by running the benchmarks on a simulated superscalar
out-of-order processor and measuring the average number of instructions executed per cycle.

Remember to enable magic breakpoints. When you start from a checkpoint you may see an
error relating to the ‘last_cache’ component. Disregard this error.

For each benchmark:

• Start Simics in stall mode, and if you don’t already have a checkpoint saved, run the bench-
mark program (bzip_sparc, mcf_sparc, soplex_sparc).
host$ ./simics -stall -c bzip_bagel_files_loaded.conf
simics> c
target# ./<benchmark>_sparc input.<jpeg/in/mps>

• It will reach a magic breakpoint and the simulation will pause.

• Run for at least 100,000,000 instructions to warm the cache. You can check its statistics the
same way we did in Lab 2. By default for this lab instruction accesses are instantaneous and
not cacheable, and only data accesses are stored in the cache:
simics> c 100_000_000
simics> cache_cpu0.statistics

• Create a checkpoint. This will be useful to you for the remaining sections of the lab assign-
ment.
write-configuration bzip_bagel_warmed_caches.conf

• Start Simics in -ma mode. When you start from a checkpoint you may see an error relating to
the ‘last_cache’ component. Disregard this error. Set the OoO parameters to the desired
values:
host$ ./simics -ma -c bzip_bagel_warmed_caches.conf
simics> ma_cpu0->fetches_per_cycle = 4
simics> ma_cpu0->execute_per_cycle = 4
simics> ma_cpu0->retires_per_cycle = 4
simics> ma_cpu0->commits_per_cycle = 4
simics> cpu0->reorder_buffer_size = 32

• Run for at least 10,000,000 cycles and count the number of instructions that commit in this
time frame. The MAI-enabled processor automatically reports the number of steps that have
occurred every million cycles (this count is cumulative). The step count is incremented every
time an instruction commits.
simics> run-cycles 10_000_000

• When you have collected enough data, halt Simics and proceed to the next benchmark.

For each benchmark, record the number of cumulative instructions executed in the span of
cycles that you measured. What is the recorded IPC for each benchmark? Which benchmark had
the best IPC, and which had the worst?

4



2.4 Collecting data about the effect of superscalar pipeline width on IPC

In this section, you will pick one benchmark and examine the effects of superscalar issue width on
IPC for that benchmark. To do this, vary the parameters of the ma_cpu0 object.
simics> ma_cpu0->fetches_per_cycle = <width>
simics> ma_cpu0->execute_per_cycle = <width>
simics> ma_cpu0->retires_per_cycle = <width>
simics> ma_cpu0->commits_per_cycle = <width>
simics> cpu0->reorder_buffer_size = 32

Vary all widths together though {1, 2, 4, 8, 16}, while keeping the reorder buffer size at 32. Then
repeat with a reorder buffer size of 64. Are there diminishing returns on increasing pipeline width?
How does reorder buffer size affect this performance? What factors might limit the effectiveness of
increasing pipeline width?

2.5 Collecting data about the effect of memory latency on OoO efficiency

In this section you will investigate the effect of the memory hierarchy on OoO machine performance.
To accomplish this you will vary the access time of the data cache and the access time of main
memory. The cache access delay is controlled by the penalty_read and penalty_write parameters
of the cache_cpu0 object (default value is 1). The main memory access delay is controlled by the
stall_time attribute of the staller_cpu0 object.

Pick one benchmark, and record the IPC in the same fashion as the previous sections for the
following memory hierarchy timings (cache read, cache write, memory):
{ (1, 1, 10), (2, 2, 10), (5, 5, 10), (1, 1, 20), (1, 1, 50) }

Use a superscalar width of 4 and a reorder buffer size of 32. The commands used to change the
parameters are:
simics> cache_cpu0->penalty_read = <cache access delay>
simics> cache_cpu0->penalty_write = <cache access delay>
simics> staller_cpu0->stall_time = <memory access delay>

Record the IPC measured for each memory configuration. What impact does increased memory
latency have on performance? To what degree does out-of-order execution mask the increased
memory hierarchy delays?

3 Open-ended Portion

3.1 Branch predictor contest!

For this open-ended project, you will design your own branch predictor and test it on some realistic
benchmarks.

Changing the operation of branch prediction in Simics would be arduous, but luckily a com-
pletely separate framework for such an exploration already exists. It was created for a branch
predictor contest run by the MICRO conference and the Journal of Instruction-Level Parallelism.
The contest provided entrants with C++ framework for implementing and testing their submis-
sions, which is what you will use for our in-class study. Information and code can be found at:

5



http://cava.cs.utsa.edu/camino/cbp2
A description of the available framework can be found at:

http://cava.cs.utsa.edu/camino/cbp2/cbp2-infrastructure-v2/doc/index.html
You can compile and run this framework on essentially any machine with a decently modern

version of gcc/g++. So, while the TA will not be able to help you with setup problems on your
personal machine, you may choose to compile and experiment there to avoid server contention. You
will only have to modify one .h file to complete the assignment! Just follow the directions at the
above link.

Just like the original contest, we will allow your submissions to be in one of two categories (or
both). The categories are realistic predictors (the size of the data structures used by your predictor
are capped) or idealistic predictors (no limits on the resources used by your predictor). Even for
realistic predictors, we are only concerned about the memory used by the simulated branch predictor
structures, not the memory used by the simulator itself. Follow the original contest guidelines.

In the interests of time, you can pick 3-5 benchmarks from the many included with the framework
to test iterations of your predictor design on. If you want to submit to the contest, make sure you
leave at least one benchmark from the whole set that you do not test the predictor on!

A final rule: you can browse textbooks/technical literature for ideas for branch predictor designs,
but don’t get code from the internet.

For the lab report: Submit the source code for your predictor, an overall description of
its functionality, and a summary of its performance on 3-5 of the benchmarks provided with the
framework. Report which benchmarks you tested your predictor out on.

For the contest: We will take the code you submit with the lab, and test its performance on
a set of benchmarks chosen by us. Please email your code in a tar file to the TA.

3.2 Create code that performs no better on an OoO machine

The goal of this open-ended assignment is to purposefully design code which does not perform any
better when run on a superscalar out-of-order processor. Such code will demonstrate poor ILP, as
shown by the measurable IPC. The goal is to have IPC of the code on the out-of-order processor
be as close as possible to the IPC of the code on the in-order processor.

You should compare the code when run on a 4–width OoO core (i.e. using the
targets/sunfire/bagle-ma-common.simics machine) with the code when run on a single-issue
in-order core (i.e. using the targets/sunfire/bagle-gcache-common.simics machine). How-
ever, make sure the parameters and configuration of the memory hierarchies are identical for both
machines!

There is no line limit for the code used in this lab. Your code must run for at least one
million cycles, and it does not have to terminate. Remember to use the full Simics path on
/share/instsww/... when compiling on the target machine.

Submit your source code, an explanation how it operates and how it restricts ILP, and the
record you made of the code’s IPC on the in-order and out-of-order cores.

3.3 Collecting data about the limits of ILP

The goal of this open-ended assignment is to test the limits of ILP achievable for the three bench-
marks included in the lab. As suggested in the directed portion of the lab, there are diminishing
returns provided by increasing the width of the processor and the size of the reorder buffer. Your

6



job for this project is to determine what these limits are using the same procedures applied in the
directed portion of the lab. Use the OoO Bagle machine with a cache access delay of 1 and memory
access delay of 10. For each benchmark, make a recommendation of processor width and reorder
buffer size, and provide as evidence data which demonstrate that your choice maximizes IPC while
minimizing on-chip overhead.

7


