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Chapter 1

About Simics Documentation

1.1 Conventions

Let us take a quick look at the conventions used throughout the Simics documentation.
Scripts, screen dumps and code fragments are presented in a monospace font. In screen
dumps, user input is always presented in bold font, as in:

Welcome to the Simics prompt
simics> this is something that you should type

Sometimes, artificial line breaks may be introduced to prevent the text from being too
wide. When such a break occurs, it is indicated by a small arrow pointing down, showing
that the interrupted text continues on the next line:

This is an artificial
line break that shouldn’t be there.

The directory where Simics is installed is referred to as [simics], for example when
mentioning the [simics]/README file. In the same way, the shortcut [workspace] is
used to point at the user’s workspace directory.

1.2 Simics Guides and Manuals

Simics comes with several guides and manuals, which will be briefly described here. All
documentation can be found in [simics]/doc as Windows Help files (on Windows),
HTML files (on Unix) and PDF files (on both platforms). The new Eclipse-based interface
also includes Simics documentation in its own help system.

Simics Installation Guide for Unix and for Windows

These guides describe how to install Simics and provide a short description of an installed
Simics package. They also cover the additional steps needed for certain features of Simics
to work (connection to real network, building new Simics modules, . . . ).
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1.2. Simics Guides and Manuals

Simics User Guide for Unix and for Windows

These guides focus on getting a new user up to speed with Simics, providing information on
Simics features such as debugging, profiling, networks, machine configuration and script-
ing.

Simics Eclipse User Guide

This is an alternative User Guide describing Simics and its new Eclipse-based graphical user
interface.

Simics Target Guides

These guides provide more specific information on the different architectures simulated by
Simics and the example machines that are provided. They explain how the machine con-
figurations are built and how they can be changed, as well as how to install new operating
systems. They also list potential limitations of the models.

Simics Programming Guide

This guide explains how to extend Simics by creating new devices and new commands. It
gives a broad overview of how to work with modules and how to develop new classes and
objects that fit in the Simics environment. It is only available when the DML add-on package
has been installed.

DML Tutorial

This tutorial will give you a gentle and practical introduction to the Device Modeling Lan-
guage (DML), guiding you through the creation of a simple device. It is only available when
the DML add-on package has been installed.

DML Reference Manual

This manual provides a complete reference of DML used for developing new devices with
Simics. It is only available when the DML add-on package has been installed.

Simics Reference Manual

This manual provides complete information on all commands, modules, classes and haps
implemented by Simics as well as the functions and data types defined in the Simics API.

Simics Micro-Architectural Interface

This guide describes the cycle-accurate extensions of Simics (Micro-Architecture Interface
or MAI) and provides information on how to write your own processor timing models. It is
only available when the DML add-on package has been installed.
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1.2. Simics Guides and Manuals

RELEASENOTES and LIMITATIONS files

These files are located in Simics’s main directory (i.e., [simics]). They list limitations,
changes and improvements on a per-version basis. They are the best source of information
on new functionalities and specific bug fixes.

Simics Technical FAQ

This document is available on the Virtutech website at http://www.simics.net/support.
It answers many questions that come up regularly on the support forums.

Simics Support Forum

The Simics Support Forum is the main support tool for Simics. You can access it at http://
www.simics.net.

Other Interesting Documents

Simics uses Python as its main script language. A Python tutorial is available at http://
www.python.org/doc/2.4/tut/tut.html. The complete Python documentation is lo-
cated at http://www.python.org/doc/2.4/.
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Chapter 2

Introduction

This document describes how to model cycle accurate microprocessors and memory sys-
tems with Simics. A basic knowledge of Simics and its time modeling (refer to Understanding
Simics Timing in Simics User Guide) is recommended before reading on.

Simics is a system-level instruction set simulator; its default CPU models are function-
ally very close to their real counterparts, detailed enough to boot and run unmodified oper-
ating systems and applications. At this level of abstraction, exact timing is rarely a require-
ment. Simics considers the execution of an entire instruction, an exception or an interrupt
as an atomic operation in the simulation process: it takes exactly one cycle.

Simics allows a user module to take control over the memory system timing, deciding
how many cycles each memory transaction requires to complete. Although this model can
be sufficient to simulate the effects of caches, it still enforces Simics’s concept of atomic,
in-order execution.

Simics Micro Architectural Interface (MAI) was designed to overcome these limitations
while keeping the power of a functional full-system simulator. Using MAI, Simics can
model the timing behavior of modern processors with deep pipelines and still run unmodi-
fied system-level software.

The basic idea behind MAI is to let the user decide when things happen, while Simics
handles how things happen. A user module chooses when to fetch, decode, execute and
commit instructions, using MAI to tell Simics to actually perform the actions. Execution is
supervised by Simics; it will notify the user when program order consistency is violated,
but even these warnings may be overridden.

Simics MAI supports out-of-order execution, multi-processor and multi-threading, branch
and value speculation; for each processor, it gives the user control over an execution tree that
represents the possible execution paths. The user module builds these paths by speculating
on output values and branches.

Simics MAI is available for the SPARC-V9 and x86 architectures. The SPARC-V9 archi-
tecture, introduced in Simics 1.4, is more mature than the x86 implementation delivered
with Simics 2.0, but both support all MAI features.
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Note: The Parameterized execution mode that was present up to Simics 1.8 (for SPARC
only) is not available any more. The ooo-micro-arch module mimics its behavior and should
be used instead.
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Chapter 3

Simics MAI Execution Model

This section provides an overview of Simics MAI concepts.

3.1 Dependences

An out-of-order CPU core needs to keep track of all dependences in the instruction stream
so that instructions do not get executed in the wrong order. We describe below the different
types of dependences and how Simics handles them.

3.1.1 Register Dependences

Figure 3.1 shows three types of dependences, read-after-write (RAW), write-after-read (WAR)
and write-after-write (WAW). We are using assembly code with the format opcode source1,
source2, destination.

and %g5, %g6, %g7

add %g7, %g2, %g4

WAR

sub %g1, %g2, %g4

xor %g7, 13, %g4

WAW

sub %g4, 3, %g4

or %g3, %g2, %g4

add %g1, %g2, %g3

RAW

Figure 3.1: Different types of dependences

RAW dependences are also called data dependences since there is a flow of data between
the dependent instructions. A data dependence exists between instruction x and y if y uses
a result directly produced by x or produced by an instruction that has a RAW dependence
on x. Instructions with RAW dependences can not be reordered. Simics will ensure that
RAW dependences are followed and will refuse to execute instructions that did not receive
all the input they needed (although the user may also speculate on the input values, thus
fulfilling this requirement).

11



3.1. Dependences

WAR and WAW dependences are sometimes called anti-dependences or name dependences
since the two instructions use the same resource but there is no flow of data between them.
A name dependence exists if:

• Instruction x reads a register or memory location that instruction y writes to or

• Instruction x writes to a register or memory location that instruction y also writes to.

Instruction WAW and WAR dependences can be reordered by allocating more resources
to their execution. In the WAW case, the CPU could write to an internal register %r0 instead
of %g4, thus removing the resource conflict and the dependence. This is commonly called
register renaming. Simics has the capability to handle all anti-dependences by using an
unlimited pool of internal registers.

SPARC-V9

Simics MAI for SPARC-V9 can rename the following registers:

• All general purpose registers, i.e. %g1 - %g7, %o0 - %o7, %l0- %l7, and %i0 - %i7. %g0
does not introduce any dependence since it always reads as zero.

• The register window state registers, i.e. %cwp, %cansave, %canrestore, %otherwin,
and %cleanwin.

• The integer condition code register %ccr.

• The multiply and divide register %y.

• All floating-point registers, %f0 - %f63. They are treated as single entities, e.g. if an
instruction is using a quad register for input it will depend on four separate single
precision registers.

• The fcc0, fcc1, fcc2, fcc3, ftt, aexc, and cexc parts of the floating-point state register
%fsr.

• The floating point register state register %fprs.

• The graphic status register %gsr.

• The alternate space identifier register %asi.

Instructions accessing other registers need to be synchronized and cannot run out of
order. See section 4.5 for more information.

x86

Simics MAI for x86 can rename the following registers:

• EAX, EBX, ECX, EDX, ESP, EBP, ESI and EDI.

• MMX registers.

12



3.1. Dependences

• XMM registers.

• EFlags register.

Instructions accessing other registers need to be synchronized and cannot run out of
order. See section 4.5 for more information.

Note that the list does not include the x87 FPU that uses a stack model to represent
floating-point registers. All x87 FPU instructions are currently synchronized.

3.1.2 Control Dependences

0xfefc cmp %i3,%i4
0xff00 beq 0xff0c
0xff04 nop
0xff08 add %g2,%g3,%g4
0xff0c ...

Figure 3.2: A control dependence

Figure 3.2 is an example of control dependence: a conditional branch instruction before
an add instruction. The add cannot be executed unless the branch target is known. Control
dependences can be avoided by speculating on the execution path. In Simics MAI control
dependences are handled by speculating on the Program Counter register (PC or IP de-
pending on the architecture). Instructions that have been fetched with a speculative PC are
marked as “speculative”. The speculative status will be removed as soon as the control path
is known. If a speculative instruction was incorrectly executed, it has to be squashed before
the execution can continue.

3.1.3 Memory Dependences

Memory data dependences are handled by an internal load-store queue (LSQ) and an op-
tional consistency controller. The LSQ handles self-consistency (i.e. ensures that program
order consistency is fulfilled) and the consistency controller handles memory consistency
for multiprocessor systems.

When a store is executed, the transaction is placed in a store queue without being issued
to memory. When the store instruction becomes non-speculative, the store operation can be
retired and sent to memory. Speculative loads are matched against the LSQ before being
sent to memory to ensure that they load the current (and possibly speculative) value of the
memory area they access.

The LSQ will also make sure that stores are never committed out of order if they conflict
and that loads cannot execute if there is a risk of conflict with a non-executed previous store.

The size of the LSQ is unlimited. It is up to the user module to place restrictions on the
number of outstanding stores.

The consistency controller is described in section 5.3.
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3.2. Instruction Tree

3.2 Instruction Tree

Simics builds a tree of active instructions to keep track of dependence information. As
instructions enter the out-of-order window, they are added as leaves to the tree with the
previous instruction in program order as their parent. Instructions can only be committed
from the window when they are at the root of the tree. Branches occur at speculation points.
Currently two forms of speculation are supported, control speculation and data speculation.

Control speculation occurs when the user model generates a fetch address that has not
yet been produced by an earlier correct instruction. The instruction being fetched will be
regarded as speculative but not necessarily incorrect . As soon as the previous instruction
executes non-speculatively the address will be compared against the speculative address. If
there is a match the instruction will be considered correct and no longer speculative.

Data speculation occurs when the user supplies an input value to an instruction that has
not yet been generated by an earlier correct instruction. As with fetches the instruction will
be speculative until the correct value arrives. If the value does not match, the instruction
becomes incorrect and need to be rewinded and re-executed or squashed.

If the control or data speculation generates an address or value that has already been
produced by an earlier correct instruction the comparison occurs immediately. Again, for
matches the instruction will be correct and for mismatches the instruction will be specula-
tive.

To keep track of speculation, Simics labels each instruction as speculative or correct.
Speculative does not imply incorrect, unless a correct branch exists. This structure al-
lows multiple speculative instruction paths to be active. In the general case, to know if
an instruction is correct or incorrect, all previous instructions need to be executed and non-
speculative.

While Simics and the underlying MAI support an unlimited number of speculative ex-
ecution paths, the current way it is used can add restrictions. The MAI is limited only by
the aggressiveness of the user model. The model can inspect the state of a branch, deciding
when incorrect instruction should be squashed.

The maximum size of the instruction tree is set by an attribute called reorder_buffer_size
in each CPU.

3.2.1 Tracking Instruction Execution

To keep track of the execution, each instruction can be queried on its current phase, its
current status and a flag indicating whether the instruction is speculative or not. The phase
describes where the instruction is in an idealized pipeline. While this might suggest an
enormous number of possible states for each instruction, not all combinations are legal or
meaningful.

The six phases of an instruction are:

Init
A place for the instruction has been reserved in the out-of-order window. At this point,
it is possible to speculatively set the fetch address.

Fetch
The instruction has been fetched from memory. If Simics was configured to do so, an

14



3.2. Instruction Tree

instruction fetch transaction has been sent to the memory hierarchy and it has finished
stalling. The instruction opcode is available.

Decode
The instruction has been decoded: its type and its input and output registers are
known. It is possible to query and set the values of the input registers. If not all the
input values are known the instruction cannot be executed. No memory transaction is
performed during this phase so it can not stall.

Execute
The instruction has been executed: all output values have been produced. Loads have
been completed; stores have been issued and are waiting in the LSQ. The instruction
may still be speculative.

Retire
To enter this phase, the instruction has to be non-speculative. Stores are sent to mem-
ory from the LSQ.

Commit
To enter this phase, an instruction must be root of the tree. The instruction results are
committed to the architectural register state.

An instruction is considered non-speculative when all the input values have been val-
idated against the previous non-speculative instructions that produced them. The fetch
address (PC) is included in the input values (control speculation).

The Retire and Commit phases could be considered as part of a global commit phase.
The reason they are separated is to allow users to retire stores out-of-order. Simics requires
however that commit to the architectural state be done in-order (when instructions are root
of the tree).

The status of an instruction is one of:

Waiting
Some input is missing and no speculation is done.

Ready
All needed input have been produced or speculated.

Stalling
Executing a memory transaction. This can happen during the Fetch, Execute and Re-
tire phases.

Faulting
The instruction has triggered an exception.

Trap (x86 only)
The instruction has triggered a trap.

Interrupt (x86 only)
An immediate interrupt must be taken before executing this instruction.
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3.2. Instruction Tree

3.2.2 Instruction Tree Example

Here follows an example of an instruction tree using SPARC assembly:

0 <0xf000e7b8> stx %g4, [%o2 + -16] R

1 <0xf000e7bc> cmp %g4, 0 R

2 <0xf000e7c0> bne,pt %xcc, 0xf000e7ac E

3 <0xf000e7c4> add %o2, 16, %o2 E

4 <0xf000e7ac> ldx [%o2 + 8], %g4 D (stalling)

5 <0xf000e7b0> stx %g4, [%o2 + -8] D (waiting for %g4) S

6 <0xf000e7b4> ldx [%o2 + 0], %g4 D (stalling)

7 <0xf000e7b8> stx %g4, [%o2 + -16] D (waiting for %g4) S

8 <0xf000e7bc> cmp %g4, 0 D (waiting for %g4) S

9 <0xf000e7c0> bne,pt %xcc, 0xf000e7ac D (waiting for %cc) S

3 <0xf000e7c4> add %o2, 16, %o2 E S

4 <0xf000e7c8> ld [%i4 + 0], %g4 D (stalling)

5 <0xf000e7cc> add %g4, 1, %g4 D (waiting for %g4) S

6 <0xf000e7d0> st %g4, [%i4 + 0] D (waiting for %g4) S

7 <0xf000e7d4> jmpl [%i7 + 8], %g0 E S

8 <0xf000e7d8> restore %g0, %g0, %g0 E S

9 <0xf0009c18> sethi %hi(0x4000), %i2 E S

10 <0xf0009c1c> bne 0xf00096a8 E S

11 <0xf0009c20> nop E S

12 <0xf00096a8> mov %i2, %o0 E S

11 <0xf0009c20> mov %i2, %o0 E S

12 <0xf0009c24> srl %o0, 0, %l0 E S

13 <0xf0009c28> sethi %hi(0xf04b2400), %o0 E S

14 <0xf0009c2c> add %o0, 896, %i0 E S

15 <0xf0009c30> srl %i3, 0, %o1 E S

16 <0xf0009c34> mov %i0, %o0 E S

8 <0xf000e7d8> restore %g0, %g0, %g0 E S

9 <0xf000e7dc> bcs,a,pt %xcc, 0xf000e814 E S

10 <0xf000e7e4> ldx [%o2 + 0], %o0 D (ready) S

11 <0xf000e7e8> cmp %o0, 0 F

12 <0xf000e7ec> be,a,pt %xcc, 0xf000e814 F

13 <0xf000e7f0> ld [%i4 + 0], %g4 F

The tree shows instructions in several different phases. Instructions 2, 7, and 10 are
branch instructions that each have 2 predicted targets (jump target and fall through). This
has created 4 possible paths through the tree. F stands for Fetched, D for Decoded, E for
Executed, and R for retired. Committed instructions have been removed from the tree. S
means that the instruction is marked as speculative.
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Chapter 4

The Micro-Architectural Interface

The Micro-Architectural Interface allows the user module to specify all actions a proces-
sor should take during one clock cycle. This gives the user total control of the scheduling
and latencies of the different instruction phases described earlier. The module is of course
not limited to these phases alone, it has full freedom to add its own phases or pipeline
stages. The simulation is driven forward by calling API functions that will pass instructions
through the different phases. It is up to the user module to decide when things should hap-
pen while Simics will still perform what should happen. This allows the user to concentrate
on the timing aspects of the processor while leaving the functional details to Simics.

This extensive API allows the user to control when instruction should be fetched, de-
coded, executed, etc. As described earlier, the active instruction state is stored in a tree. This
helps the user keep track of dependences between instruction and prevents instructions
from being executed before input data is available.

Complete details of all API functions are documented in appendix A.

4.1 Cycle Handler

The entry to the Micro Architectural Interface is a cycle handler. It is a call-back function
that is called every clock cycle and is the location for the user code that models the micro
architecture of the processor. The call-back should be placed in a module that can be loaded
into Simics (see the Simics User Guide for a detailed description on how to write loadable
modules).

The cycle handler can be configured to be called in different ways depending on the
machine that will be modeled. If a single processor system or a SMP system is the target
(where all the processors are independent) the cycle handler can be set up so that it is called
once for each processor during a clock cycle, i.e. the whole first cycle is modeled for the
first processor, then the whole first cycle is modeled for the second processor, etc. until
all processors have modeled their first cycle, then the second cycle is modeled for the first
processor and so on.

If a SMT system should be modeled each thread will be mapped on one Simics proces-
sor so that each physical processor will actually consists of a group of Simics processors.
One cycle handler should then be used per group since the threads in one group will be
dependent and may interact with each other during the same cycle.
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4.1. Cycle Handler

An example of how to set up a cycle handler is presented below.

...

void

my_cycle_handler(conf_object_t *cpu, void *data)

{

// All threads on one CPU is modeled here, cpu will

// point the the first thread on each physical CPU.

// when we are finished we post ourself in the next cycle

SIM_time_post_cycle(cpu, 1, 0, my_cycle_handler, data);

}

static void

setup(void *data)

{

/* We set up a multi-processor system with 3 CPUs.

Each CPU consists of 2 threads. We need a 6 processor

configuration for this to work where,

cpu0 and cpu1 are threads on the first physical processor,

cpu2 and cpu3 are threads on the second physical processor,

cpu4 and cpu5 are threads on the third physical processor.

*/

SIM_time_post_cycle(SIM_get_object("cpu0"),

0, 0, my_cycle_handler, data);

SIM_time_post_cycle(SIM_get_object("cpu2"),

0, 0, my_cycle_handler, data);

SIM_time_post_cycle(SIM_get_object("cpu4"),

0, 0, my_cycle_handler, data);

}

/* This code is called when the module is loaded into Simics */

DLL_EXPORT void

init_local(void)

{

void *user_data = 0;

/* We call the setup function as soon as we have a ready

configuration */

if (SIM_initial_configuration_ok())

setup(user_data);

else

SIM_hap_register_callback("Core_Initial_Configuration",
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4.2. Creating the Instruction Tree

setup, user_data);

}

...

4.2 Creating the Instruction Tree

As stated previously, the state for an instruction in the out-of-order window is maintained
in an Instruction Tree. Instructions in the tree are identified by an instruction id which is
returned when the data structures for the instruction are allocated through the API function
SIM_instruction_begin. All API functions that operate on an instruction take the instruction
id as parameter.

Once an instruction is created with SIM_instruction_begin it can be inserted into the
instruction tree with SIM_instruction_insert. This function takes the id of the instruction to
insert and the id of a parent instruction. If the parent instruction already has a child the new
instruction will be added as an additional child, thus creating a branch in the tree.

4.3 Proceeding Instructions

So far our instruction tree contains only empty instruction data structures. SIM_instruction_
proceed is used both to initialize these data structures and to move the instruction between
the phases of instruction operation. The defined instruction phases are: initiated, fetched,
decoded, executed, retired, and committed. More phases may be added in the future. These
phases do not map directly to a modern processor pipeline but define the atomic phases an
instruction can be broken down to inside Simics. Somewhere along the pipeline an instruc-
tion need to pass through some or all of these phases.

The user can define which phases to proceed to by calling SIM_instruction_set_stop_
phase. This function takes a phase and a boolean value. SIM_instruction_proceed will then
stop after the next phase that is set to true. For convenience there are predefined functions
that combine setting a stop phase and proceeding. These shortcuts are: SIM_instruction_
fetch, SIM_instruction_decode, SIM_instruction_execute, SIM_instruction_retire, and SIM_
instruction_commit.

Instructions can be proceeded to the decoded phase before they are inserted in the in-
struction tree, this is useful if the tree location for a decoded instruction depends on its type
(the type of an instruction can be determined when it is decoded). For example the instruc-
tion following a delay slot have a different parent depending on whether the delay slot is
annulled or not.

4.3.1 Fetch Phase

During the fetch phase an instruction is copied from memory into the internal instruc-
tion data structures created by SIM_instruction_insert. As this is a memory operation,
any memory hierarchy attached to Simics will be called during the phase. The memory
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4.3. Proceeding Instructions

hierarchy may indicate that the memory access should stall the CPU. If this occurs SIM_
instruction_proceed or its shortcuts will return a status value to notify the caller about this.
SIM_instruction_remaining_stall_time will return the number of cycles remaining. Once
the stall has completed SIM_instruction_remaining_stall_time will return zero and the in-
struction can be proceeded to the next phase. If SIM_instruction_proceed or any of its short-
cuts is called before the stall time has completed they will return the same status value again.

Fetching an instruction may also generate an exception. In this case another status value
is returned. Exception handling is described in section 4.3.6.

A program counter value is necessary to fetch an instruction. Simics can look for the
value in several places. If the instruction is at the head of the instruction tree or not yet
inserted in the tree, Simics will read the architectural state. For instructions at other loca-
tions in the tree, Simics will look in the output of the parent instruction. If the parent has
not reached the executed phase the program counter output field will be invalid and the
instruction will not be able to proceed to fetched. However the user can also override the
default program counter value with the function SIM_instruction_write_input_reg. This is
the only way to fetch instructions whose parent has not yet executed. This will also mark
the instruction as speculative. As soon as the parent instruction is executed the child will
become non-speculative if the produced value of the program counter matches the one set
(if the parent was non-speculative). When the written program counter does not match
the generated program counter the instruction is incorrect and will eventually need to be
discarded. See section 4.4.

When simulating the SPARC architecture the above applies to nPC as well.
When an instruction is fetched SIM_instruction_opcode can be used to retrieve the op-

code.

4.3.2 Decode Phase

During the decode phase Simics translates the fetched instruction into the internal data
structures that are used during execution. It is then possible to use SIM_instruction_type to
determine the type of the instruction and SIM_instruction_get_reg_info to find the registers
used by the instruction. These registers can then be read and written with SIM_instruction_
read_input_reg and SIM_instruction_write_input_reg.

Under special circumstances the instruction cannot be decoded until the value of a cer-
tain register that determines the instruction is known. For example on the SPARC architec-
ture the value of the asi register can change the instruction from a normal memory operation
into a block operation. In this case SIM_instruction_proceed and SIM_instruction_decode
will return an error code until the value of the asi register is known.

4.3.3 Execution Phase

Instruction semantics are modeled during the execution phase. Thus input values are used
to produce output values. The input values used are collected from previously executed
instructions by reading from the pool of internal registers or from the architectural register
state. The output values are written to the internal registers. As stated before Simics has no
restrictions on the number of internal registers.
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4.3. Proceeding Instructions

Before an instruction can execute all the input values must have been produced, i.e. all
dependences must be fulfilled. This is done either by executing all instructions that the
instruction depends on or by explicitly setting the value of an input register with SIM_
instruction_write_input_reg. As with the program counter the latter case will also make
the instruction speculative until an earlier instruction produces the same value. This is how
value speculation can be handled.

Instructions that access memory may stall if the connected memory hierarchy returns a
stall time. SIM_instruction_proceed and SIM_instruction_execute will then return a status
code to signal this.

As with the fetch and decode phases, a status code will be returned if the execution
phase does not complete due to an exception.

4.3.4 Retire Phase

During the Retire phase, all stores that were speculatively executed and kept in the LSQ are
sent to memory, one by one and in order if the instruction executed several.

Before an instruction can retire it must have become non-speculative. Retiring stores can
be done out-of-order since the LSQ will take care of reordering stores that are conflicting.
Note that starting the Retire phase makes the instruction unsquashable since the architec-
tural state will be modified.

An instruction may stall during the Retire phase since memory operations are sent to
the memory hierarchy. The status codes are the same as for the Execute phase. A retiring
store may trigger an exception (like a memory parity error). In this case, it will be marked
as faulting with status executed.

4.3.5 Commit Phase

Instruction output is written back to the architectural state during the commit phase. When
committed, the instruction is automatically removed from the instruction tree, but the data
structures remain until explicitly deallocated by calling SIM_instruction_end. Instructions
marked as speculative cannot be committed. However the user can force speculative com-
mit by calling SIM_instruction_force_correct to remove the speculative status before com-
mitting. This is strongly discouraged since it may lead to incorrect execution. In addition,
an instruction can only be committed if it is at the root of the instruction tree and it has only
one child instruction. The one child limit is to avoid the creation of two separate instruction
trees.

Committed instructions cannot be discarded since their output have been copied to ar-
chitectural state and thus cannot be rolled back.

4.3.6 Exceptions

Exceptions may occur at any phase of instruction operation. Exceptions are signaled by a
return code from SIM_instruction_proceed or its shortcuts. Once an exception has been sig-
naled the instruction cannot proceeded to further phases. The exception should be handled
by calling SIM_instruction_handle_exception on the faulting instruction. This call will set
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4.4. Discarding Instructions

the program counter to the first instruction in the corresponding exception handler. Cur-
rently this function requires that the instruction tree contains only the faulting instruction.
All earlier instructions must have been committed and all later instructions need to be dis-
carded. All previous instruction must be committed as Simics can only service exception
handlers in order and non-speculatively. This cannot be guaranteed unless the instruction
with the exception is the oldest instruction in the tree.

4.3.7 Interrupts

Interrupts differ from exceptions in that they are inherently asynchronous. Thus while the
handling mechanism is similar the signaling mechanism is quite different. Simics signals
that an interrupt has occurred by raising an Asynchronous_Trap hap. The user must install
a handler for this hap. The suggested operation is that the hap handler set a flag visible
to the cycle handler. Once the cycle handler is aware of an interrupt it may choose to ser-
vice the interrupt by calling SIM_instruction_handle_interrupt at any time, subject to one
restriction - the instruction tree must be empty. When SIM_instruction_handle_interrupt
is called Simics will cache the current value for the next instruction and replace it with the
address of the first instruction in the interrupt vector. When the interrupt completes the
cached address will be used to return control to the interrupted location.

4.4 Discarding Instructions

When speculation is used, the CPU model may cause wrong path or otherwise incorrect
execution and the effects of these instructions must be discarded. This is done in Simics by
calling SIM_instruction_squash on an instruction. This function will remove the instruction
and all its descendants from the instruction tree and deallocate the data structures. There is
no need to call SIM_instruction_end.

Memory operations that are associated with squashed instructions that have been is-
sued from the consistency controller to the rest of the memory hierarchy will continue as
normal, though no values will be written. Memory instruction that have not issued from
the consistency controller will simply be removed. Thus from the perspective of the mem-
ory hierarchy, memory transactions are either executed completely or not at all.

4.5 Synchronous Instructions

Simics does not currently have the ability to rename all architectural state, thus there are
a limited number of instructions that write to the architectural state immediately. These
instructions are called synchronous instructions as they must be run synchronously. SIM_
instruction_is_sync can be used to determine if an instruction is synchronous. These in-
structions need to be executed non-speculatively and when all earlier instructions in the
tree have been executed or committed. This is to ensure that the immediate changes to the
architectural state caused by the instruction are never incorrect. If a synchronous instruction
is executed in an illegal way SIM_instruction_proceed will return an error code.

Note that this is a Simics limitation and not an architectural limitation. In appendix B
and appendix C all synchronous instructions are listed for SPARC and x86 respectively.
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4.6. Limitations in the Simics MAI Implementation

4.6 Limitations in the Simics MAI Implementation

• Simics does not currently have an address calculation phase which means that the
address for a store instruction is calculated when all input registers are known, not as
soon as the registers used in the address calculation are known. This may cause a store
to prevent other operations from running as soon as they could have, and thus limit
the parallelism achievable by the model more than what is theoretically necessary.

• (SPARC only): Block loads block operation and stores obey register dependences, but
the hardware does not. As long as the running code is written so that it does not rely
on pipeline effects, this limitation should not be a problem.

• The instructions tree is not saved in a checkpoint. Only the committed architectural
state and retired stores are saved.

• Some x86 transactions are non-stallable and will bypass the LSQ. This includes stack
transactions performed when taking an interrupt or an exception, hardware table-
walks, saving the entire fp state or doing a 10-byte fp read/write.
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Chapter 5

The Memory System

This section will describe in details the elements that are used in Simics MAI memory sys-
tem.

5.1 Load-Store Queue

The LSQ built into Simics is based on the instruction tree. Store transactions are kept in the
tree to make it possible to inspect the store queue state in the different speculation paths.

Inserting a store transaction in the queue takes no time and the LSQ has an infinite size.
It is up to the user module to set delays and restrictions to limit the LSQ.

The LSQ enforces program-order consistency. The following rules apply:

Loads from memory
A load transaction is allowed to execute only if all previous stores have been executed
(i.e., there have been inserted in the LSQ). If there are instructions potentially perform-
ing stores higher up in the execution path that are still at the decode phase, the load is
blocked until the blocking stores have been executed.

If the load is not blocked, it is matched against speculative stores in the LSQ (in the
corresponding execution path). If matches are found, the data is retrieved from the
LSQ. If more data is needed, the load is sent to memory. The resulting data is merged
with the LSQ data and the result is returned to the processor.

Loads from devices
A load transaction that accesses a device is only allowed to execute as root of the tree
(which makes it non-speculative).

Stores to memory
When the instruction enters the execute phase, stores are inserted in the LSQ.

When the instruction enters the retire phase, the corresponding stores are sent to mem-
ory (in order if the instruction has performed several). The LSQ searches for potential
conflicting stores and forces stores that would overlap each other to execute in-order.
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5.1. Load-Store Queue

Stores to devices
A store transaction that accesses a device is only allowed to execute as root of the tree
(which makes it non-speculative).

Atomic instructions
Atomic instructions will be blocked if they may conflict within a certain granularity
with an earlier load in the tree that has not been executed or an earlier store in the
tree that has not been retired. This is because atomic instructions lock a ram region
when they have reached the execute phase (see section 5.2) which means that a dead-
lock situation may occur if an atomic instruction executes before an earlier conflicting
instruction. The earlier instruction will in this case wait for the lock to be released and
the atomic instruction will wait for the earlier instruction to complete according to the
above rules of the LSQ. To avoid this atomic instructions will have to wait until there
are no conflicts. Due to the locking mechanism the load part of an atomic instruction
will always be sent to memory although all its data can be found in the LSQ.

The granularity can be set by an attribute in the processor object, <processor>.lock_
granularity. If set to zero atomic instructions will not be blocked and it is up to the
processor model to avoid deadlocks. If set to non-zero it should be set to the same
granularity as set for the ram objects. The default granularity is 8 bytes which is the
same as the default granularity for the ram object.

Some memory transactions bypass the LSQ:

• Instruction fetches are always sent directly to memory. If you want your model to
handle self-modifying code (instead of letting the software synchronize this itself), you
will need to reorder instruction fetches when they arrive to the memory hierarchy.

• Control (cache lock, flush, . . . ) and prefetch transactions bypass the LSQ as well.

• Some special x86 transactions may bypass the LSQ but there are usually associated
to synchronizing instruction so it will not matter. The model limitations are listed in
section 4.6.

5.1.1 Disabling the Load-Store Queue

The internal LSQ can be disabled by setting the attribute lsq_enabled to 0 in each CPU object.
When the LSQ is disabled all memory transactions are sent to memory during the execution
phase. The retire phase thus becomes superfluous and proceeding instructions through it
will have no effect.

Note that when the LSQ is turned off program order consistency will not be maintained
any longer by Simics. It is up to the timing model to ensure that memory operations does not
complete in wrong order. It is therefore strongly recommended that the LSQ never disabled
unless you are 100% sure of what you are doing.

The main reason for disabling the LSQ would be if a model of a memory system should
be simulated that is more relaxed than what is allowed by the internal LSQ.
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5.2. Atomic Instructions

5.2 Atomic Instructions

There is a memory locking mechanism implemented for atomic instructions that prevents
processors in a multi-processor system from breaking atomic properties. An atomic instruc-
tion typically consists of a load and a store part that must be performed without any inter-
vening conflicting transactions. MAI handles this by locking a ram region at a configurable
granularity when the first access is issued. The lock is released as soon as the second access
is finished or if the instruction is squashed. Any conflicting transaction to the same memory
region issued between the two by any processor will stall until the lock is released. The
granularity can be set in each ram object to control the size of a region. If the size is set to
0 no locking will be performed and it is then up to the timing model to handle the locking.
The default granularity is set to 8 bytes.

5.3 Consistency Controller

Note: In previous versions of Simics, the consistency controller was responsible for keeping
program order consistency. This is now performed by the LSQ so no consistency controller
is needed to run one processor systems.

When simulating multi-processors systems with Simics MAI, you may want to apply a
stronger consistency model then the one the LSQ is providing. The consistency controller
module provides some default models.

The consistency controller can be controlled through attributes (setting the an attribute
to 0 will imply no constraint):

load-load
if set to non-zero loads are issued in program order

load-store
if set to non-zero program order is maintained for stores following loads

store-load
if set to non-zero program order is maintained for loads following stores

store-store
if set to non-zero stores are issued in program order

prefetch
prefetching (see explanations below)

Instructions that issues both loads and stores, e.g. swap instructions, will have both the
load and the store status. Thus setting any of the first four attributes will order all such
instructions.

The prefetch attribute is orthogonal to all other consistency controller attributes. When
not enabled the consistency controller does not issue any memory transaction to the remain-
der of the memory hierarchy until they are guaranteed to obey the consistency rules. When
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5.3. Consistency Controller

L
1 

C
ac

he
L

2 
C

ac
he

Si
m

ic
s

In
st

ru
ct

io
n 

T
re

e

Consistency
Controller

Figure 5.1: Consistency Controller
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5.4. Generic Cache OOO

enabled the prefetch option causes a prefetch to be issued to the rest of the memory hierar-
chy for all operations where the target address is ready before the consistency controller has
guaranteed correctness. As prefetches are nonbinding, it is always correct for any portion
of the memory system to ignore them. Note: prefetches are not allowed to stall and they are
only sent once for each instruction.

The source code for the consistency controller is available so it is easy to change its
behavior in detail. See simics/src/extensions/consistency-controller.

5.4 Generic Cache OOO

A special cache model called g-cache-ooo is provided with Simics MAI to handle multiple
outstanding transactions and out-of-order execution. It is very similar to g-cache described
in Simics User Guide so we describe here only the differences that are introduced by the
special MAI requirements.

Although g-cache and g-cache-ooo have a very similar interface (in terms of attributes
and commands), they do not handle transactions in the same way. Whereas g-cache takes
care of a transactions in one pass, computing all the penalties and performing all the state
changes as the transaction goes through its different phases, g-cache-ooo tries to present a
more credible model for out-of-order execution. Each phase of a transaction in the cache
is considered and handled separately. A transaction may trigger a copy-back that will last
some cycles, then a fetch will be sent to the next level stalling the cache for some more cycles,
and finally the result will be returned. During these phases, g-cache-ooo ensures that other
transactions behave in a sensible manner: for example, if two transactions want to fetch the
same cache line, the second transaction is considered as a delayed hit and its value will be
returned when the first (missing) transaction is completed; cache lines are locked as long as
the transaction using them is on-going.

g-cache-ooo supports the same options as g-cache except:

• MESI is not implemented.

• There is no penalty_read_next and penalty_write_next attributes. You should connect a
next level memory hierarchy if you want transactions to the next level to stall longer.
The trans-staller module can be used to set a simple delay.

• g-cache-ooo can not use the STCs to get improve the speed of the simulation.

Some new, MAI specific features have been introduced:

• The attributes config_read_per_cycle and config_write_per_cycle limit the number of read
and write transactions that can be initiated in the cache for a given cycle.

• The attributes config_max_out_trans limits the number of outstanding transactions that
can be present in the cache.

g-cache-ooo can be used with any Simics configuration, even without MAI. However,
since it relies quite heavily on the ability to stall transactions to handle state changes, only
stallable transactions are considered cacheable. If you want to warm-up your caches with
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5.5. Instruction Fetches

a normal run and wish to include transactions that are normally not stallable (and thus not
cacheable) like x86 instruction fetches, you should:

1. Set all penalties in your memory hierarchy to 0.

2. Set the attribute config_accept_no_stall to 1 to tell the cache to accept non-stallable trans-
actions.

5.5 Instruction Fetches

Instruction fetches are not sent to the memory hierarchy by default. To enable this set the
attribute instruction-fetch-mode to the string "instruction-fetch-trace" in each pro-
cessor object or use the command instruction-fetch-mode to enable it on all processors, e.g.

instruction-fetch-mode instruction-fetch-trace

Note: The instructions-fetch-mode is a session attribute and Simics does not save session at-
tributes in a checkpoint. Therefor it is necessary to reset this attribute or rerun the command
each time a checkpoint is loaded. You can also add the attribute to each CPU object in the
the checkpoint file by hand.

For instructions fetches that cross page boundaries (x86 only) the memory transaction
will be split in two parts, where the first part will have page_cross set to one and the second
part will have page_cross set to 2. For non-crossing transactions page_cross will be zero. This
applies to data accesses as well.
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Chapter 6

Getting Started with SPARC-V9 MAI

There are a number of pre-configured setups included in the Simics distribution that uses
the MAI to simulate out-of-order processors. They are all examples on how to use the API
in different ways. The scripts reside in the same directory as the ordinary Simics scrips for a
specific target. The name of the scripts contains ooo (for out-of-order). Here follows a short
description of each script and how they can be further configured:

• simics/targets/sunfire/bagle-ooo-common.simics

• simics/targets/sunfire/donut-ooo-common.simics

• simics/targets/serengeti/sarek-ooo-common.simics

These scripts uses the module ooo-micro-arch (see the source code in simics/src/
extensions/ooo-micro-arch) to demonstrate how MAI works. The model can
fetch, execute, and commit a configurable number of instructions per cycle. No branch
speculation is performed, thus if an unresolved branch is found the fetches are stalled
until the outcome of the branch is determined.

If an exception occurs the instruction tree is drained and all the speculative instruc-
tions beyond the one that caused the exception are discarded.

A pipeline is modeled with a combined fetch/decode stage, an execute state, and a
commit stage.

Each processor gets an object of the ooo_micro_arch class attached to it that handles
the simulation. These objects have some attributes that can be changed to alter the
behavior of the model:

– <ooo_micro_arch>.fetches_per_cycles controls the number of instructions that can
be fetched and decoded per cycle. Default is 1.

– <ooo_micro_arch>.execute_per_cycles controls the number of instructions that can
be executed per cycle. The instructions can be dependent of each other. Default
is 1.

– <ooo_micro_arch>.commits_per_cycles controls how many instructions that can be
committed per cycle. Default is 1.
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• simics/targets/sunfire/bagle-ma-common.simics

• simics/targets/sunfire/donut-ma-common.simics

• simics/targets/serengeti/sarek-ma-common.simics

These scripts use the sample-micro-arch module (see simics/src/extensions/
sample-micro-arch). The processors modeled can fetch/decode, execute, and com-
mit a configurable number of instructions per cycle.

The model has a simple branch-predictor that uses a hash table (Branch Target Buffer)
to lookup the target address from the address of the branch instruction. This allows
for branch speculation. The hash table is updated for every successfully committed
branch.

Besides speculating on the target address, the model also speculate fall through for
every branch. This way two possible execution paths are created for every branch.
This makes the instruction tree into a binary tree. The number of instructions executed
and fetch per cycle is actually per branch in the instruction tree.

There is a compile time switch available called VALUE_PREDICTION that can be de-
fined to switch on value prediction of loads. It works like a small cache that maps log-
ical addresses to values. When a load is issued, the cache is looked up first to quickly
get value that can be used by later instructions. When the load is finished the specu-
lated value is checked against the real value. If they mismatch, the later instructions
need to be squashed.

Each processor gets an object of the sample_micro_arch class attached to it that han-
dles the simulation. The class implements the following attributes:

– <sample_micro_arch>.fetches_per_cycles controls the number of instructions that
can be fetched and decoded per cycle. Default is 4.

– <sample_micro_arch>.execute_per_cycles controls the number of instructions that
can be executed per cycle. The instructions can be dependent of each other. De-
fault is 4.

– <sample_micro_arch>.retires_per_cycles controls how many stores that can be re-
tired to memory per cycle. Default is 4.

– <sample_micro_arch>.commits_per_cycles controls how many instructions that can
be committed per cycle. Default is 4.

– <sample_micro_arch>.out_of_order_retire. If non-zero the retire phase can be per-
formed out of order. Default is 0.

The following attributes in each CPU object can also be used to further configure the
models:

• <processor>.reorder_buffer_size controls the total number of instructions that fit in the
instruction tree.
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• <processor>.auto_speculate_cwp. If set to non-zero the CWP register is automatically
speculated, i.e. if a save instruction is encountered in the instruction stream the value
of the CWP register will automatically be incremented (modulo the number of win-
dows) for the following instructions, and if a restore or a return instruction is found
CWP will be decremented automatically.
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Chapter 7

Getting Started with x86 MAI

The Enterprise in [simics]/targets/x86-440bx/ comes pre-configured with a simple
MAI model: enterprise-ma-common.simics. You can start it as you would start any
Simics script:

# ./simics -ma targets/x86-440bx/enterprise-ma-common.simics

Checking out a license... done: academic license.

+----------------+ Copyright 1998-2005 by Virtutech, All Rights Reserved

| Virtutech | Version: Simics 3.0.0

| Simics | Build: trunk Tue Sep 13 10:03:44 2005 UTC

+----------------+

www.simics.com "Virtutech" and "Simics" are trademarks of Virtutech AB

Type ’copyright’ for details on copyright.

Type ’license’ for details on warranty, copying, etc.

Type ’readme’ for further information about this version.

Type ’help help’ for info on the on-line documentation.

simics>

If the log level of the sample x86 model is set to 2, it will print out how many steps it has
executed every 65536 cycles. Since the speed of the model depends a lot on the executed
instructions, it is a useful indication of how far the simulation has run:

simics> ma_cpu0.log-level 2

[ma_cpu0] Changing log level: 1 -> 2

simics> c

[ma_cpu0 info] cycle: 65535, steps: 128584

[ma_cpu0 info] cycle: 131071, steps: 325192

[ma_cpu0 info] cycle: 196607, steps: 521800
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Note: The P4 memory hierarchy example and the scripts to handle the change from in-
order execution to MAI in Simics 2.x have not been ported yet to the new targets scripts,
which is why they are not presented here.
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Chapter 8

Using Simics with MAI

Running an MAI model in Simics affects Simics’s user interface. Whereas in in-order Simics
changes are atomic and always visible to the user, in Simics MAI multiple instructions can
be in-flight at the same time and several instructions can be committed in the same cycle.
The consequence is that standard Simics commands for inspecting the machine state will
now only inspect the committed state of the CPU. There are several other small differences
when running MAI compared to in-order Simics. These differences are described in the
following sections.

8.1 Starting Simics

When using MAI Simics must be started with the -ma flag, otherwise the standard in-order
version will be used. Make sure you start Simics with a start script that is intended for MAI.
All such scripts provided by Virtutech contains -ma- or -ooo-. For example,type:

# ./simics -ma targets/serengeti/sarek-ma-common.simics

This will start Simics in MAI mode. The script will add a cache hierarchy with one g-
cache-ooo. A sample-micro-arch object will also be added that performs the micro-architectural
simulation. Its cycle handler will be posted on cpu0.

8.2 Inspecting State

A command called print-instruction-queue is provided to print out the current execution
tree, displaying input and output register values according to the phase of execution of the
instructions in flight. Continue using the started Simics session from section 8.1 and run for
a while, then inspect the instruction tree by issuing the following commands:

simics> run-cycles 2000
simics> print-instruction-queue
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8.3. Running and Stepping

This will print all the inserted instructions in the tree. Branches will be indented if they
exists. Using the -v flag to print-instruction-queue will tell the command to print the values
of input and output registers and the contents of the LSQ as well.

print-instruction-queue can also be invoked for a special processor, e.g.

simics> cpu0.print-instruction-queue

8.3 Running and Stepping

The run-cycles command is used in the example above. It will run a particular number of
cycles before returning to prompt. It is more appropriate to use this command than the run
(continue) command when running MAI since the run command will run a certain number
of instructions (steps) and this may not add up to an even number of cycles causing a cycle
to be incomplete. The same holds for step-instruction and step breakpoints inserted by the
step-break and step-break-absolute commands.

Steps are consumed just before an instruction is committed, or an exception or interrupt
is handled. Breaking after a number of steps may force the MAI module to break inside a
cycle. It is up to the module to decide what action to take if this happens. SIM_instruction_
proceed, SIM_instruction_commit, SIM_instruction_handle_exception, and SIM_instruction_
handle_interrupt will return special value if the simulation should be stopped at the next
step count. The module can call SIM_break_cycle(cpu, 0) or SIM_break_simulation and
then exit the cycle handler to return to prompt. The sample-micro-arch and ooo-micro-
arch do this after printing a warning message.

To advance the simulation a single cycle use the step-cycle command. A neat combina-
tion of commands is:

simics> sc; piq -v

sc is short for step-cycle and piq is short for print-instruction-queue. With this it is easy
to monitor changes in the instruction tree for each new cycle.

For multiprocessor systems there is a special command called step-cycle-single or scs
for short that steps the first processor one cycle, then if reinvoked it steps the next processor
one cycle etc. The current fronted processor is changed between each invocation making in-
spection commands like print-instruction-queue to work on the newly stepped processor:

simics> scs; piq -v

8.4 Breakpoints

Code breakpoints and magic breakpoints will trigger just before the instruction is commit-
ted or an exception is handled. SIM_instruction_proceed, SIM_instruction_commit, and
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8.5. Checkpointing

SIM_instruction_handle_exception will signal this by returning a special value and it is up
to the processor module to exit the cycle.

Time breakpoints will work fine and the preferred way of breaking Simics in MAI. Step
breakpoints may break inside a cycle as described in the previous section.

Pressing control-C will always break at an even cycle boundary.

8.5 Checkpointing

The recommended way of working with MAI is to first position the workload by running
standard in-order Simics. Using in-order simulation is magnitudes faster than running in
micro-architectural mode.

We recommend the following steps for your simulation setup:

1. Boot the machine in in-order Simics. Use one of the provided scripts in the target
directory. Most of the machines will log in automatically.

2. Import your workload by using SimicsFS for example. Take a checkpoint.

3. Add caches to the configuration using a script. Warm the caches by running up to
the point where your actual workload starts. If you are using other components that
needs warming this may be done in this phase too. I branch predictor could for ex-
ample be warmed up by using the tracing facilities in Simics. This time run with the
-stall option. Cache simulation is not supported by the normal execution mode. Take
another checkpoint.

4. Start Simics in MAI mode from the second checkpoint:

# ./simics -ma -c checkpoint2

Use a script to add your micro-architectural model and possibly consistency con-
trollers to the configuration. Now you can start simulating.
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Appendix A

Micro Architectural Interface API

Here follows a description on all function in the Micro Architecture Interface. Many of the
API functions use the enum type instruction_error_t for signaling error codes. The type is
defined like this:
typedef enum instruction_error {

Sim_IE_OK = 0,
Sim_IE_Unresolved_Dependencies,
Sim_IE_Speculative,
Sim_IE_Stalling,
Sim_IE_Not_Inserted, /* trying to execute or squash an

instruction that is inserted. */
Sim_IE_Exception, /* (SPARC-V9 only) */
Sim_IE_Fault = Sim_IE_Exception,
Sim_IE_Trap, /* (X86 only) Returned if a trap is

encountered */
Sim_IE_Interrupt, /* (X86 only) Returned if an interrupt is

waiting and interrupts are enabled */

Sim_IE_Sync_Instruction, /* Returned if sync instruction is
not allowd to execute */

Sim_IE_No_Exception, /* Returned by SIM_instruction_
handle_exception */

Sim_IE_Illegal_Interrupt_Point,
Sim_IE_Illegal_Exception_Point,
Sim_IE_Illegal_Address,
Sim_IE_Illegal_Phase,
Sim_IE_Interrupts_Disabled,
Sim_IE_Illegal_Id,
Sim_IE_Instruction_Tree_Full,
Sim_IE_Null_Pointer,
Sim_IE_Illegal_Reg,
Sim_IE_Invalid,
Sim_IE_Out_of_Order_Commit,
Sim_IE_Retired_Instruction, /* try to squash a retiring instruction */
Sim_IE_Not_Committed, /* Returned by SIM_instruction_end */
Sim_IE_Code_Breakpoint,
Sim_IE_Mem_Breakpoint,
Sim_IE_Step_Breakpoint,
Sim_IE_Hap_Breakpoint

} instruction_error_t;
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A.1. Micro Architecture API Functions

A.1 Micro Architecture API Functions

SIM_instruction_begin()

NAME
SIM_instruction_begin — begin an instruction

SYNOPSIS

instruction_id_t

SIM_instruction_begin(conf_object_t *cpu);

DESCRIPTION
In the Micro Architectural Interface instructions passing through the processor pipeline
are identified by an instruction id. This function creates a new id and allocates the nec-
essary data structures to handle the instruction. All the API functions referring to the
instruction will take the instruction id as a parameter.

To assign the id to a particular instruction in memory, you should speculate on the
program counter input register with SIM_instruction_write_input_reg. Instructions
should also be linked together to form execution paths, see SIM_instruction_instert
for details.

Instructions are deallocated by SIM_instruction_end.

EXCEPTIONS
General Thrown if the pre-allocated space for the instruction queue which is set by
the processor attribute reorder_buffer_size is full.

RETURN VALUE
A new instruction id.

SEE ALSO
SIM_instruction_insert, SIM_instruction_proceed, SIM_instruction_end
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A.1. Micro Architecture API Functions

SIM_instruction_child()

NAME
SIM_instruction_child, SIM_instruction_parent — get the parent or child

SYNOPSIS

instruction_id_t

SIM_instruction_child(instruction_id_t ii, int n);

instruction_id_t

SIM_instruction_parent(instruction_id_t ii);

DESCRIPTION
SIM_instruction_child returns the child n (counting started from 0) for instruction ii.
Child 0 will always be valid if the instruction has a child, i.e. if child 0 is squashed
child 1 will become 0 etc.

SIM_instruction_parent returns the parent instruction.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
The instruction id of the requested instruction, or 0 if there is none.
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A.1. Micro Architecture API Functions

SIM_instruction_cpu()

NAME
SIM_instruction_cpu — get the CPU of an instruction

SYNOPSIS

conf_object_t *
SIM_instruction_cpu(instruction_id_t ii);

DESCRIPTION
Returns the CPU that the instructions ii was created on using SIM_instruction_begin.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
The CPU of the instruction ii.
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A.1. Micro Architecture API Functions

SIM_instruction_end()

NAME
SIM_instruction_end — deallocate an instruction

SYNOPSIS

instruction_error_t

SIM_instruction_end(instruction_id_t ii);

DESCRIPTION
This function deallocates the data structures previously allocated by SIM_instruction_
begin. The instruction can be ended if it is not yet inserted in the instruction tree or if
it is committed (SIM_instruction_proceed, SIM_instruction_commit). To remove an
inserted instruction use SIM_instruction_squash.

ii is the id of the instruction to deallocate.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
Sim_IE_OK on success,
Sim_IE_Not_Committed if the instruction is not committed.

SEE ALSO
SIM_instruction_begin, SIM_instruction_proceed, SIM_instruction_squash
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A.1. Micro Architecture API Functions

SIM_instruction_force_correct()

NAME
SIM_instruction_force_correct — remove speculative status

SYNOPSIS

void

SIM_instruction_force_correct(instruction_id_t ii);

DESCRIPTION
Note: this function was previously called SIM_instruction_set_right_path.

This function removes the speculative status of the instruction. This can be used to
model an architecture which is not consistent with program order execution. Use this
function with care since it may lead to incorrect results.

ii is the id of the instruction to check,

EXCEPTIONS
Index Thrown if ii is illegal.
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A.1. Micro Architecture API Functions

SIM_instruction_get_field_value()

NAME
SIM_instruction_get_field_value — read value of format field

SYNOPSIS

integer_t

SIM_instruction_get_field_value(instruction_id_t ii,

const char *field_name);

DESCRIPTION
This function is deprecated. Use SIM_instruction_opcode instead.

Reads the value of a format field. Fields that represent signed constants will automat-
ically be sign extended. ii is the instruction to on CPU cpu to extract the field from.

Supported fields for the SPARC v9 target are (see the SPARC Architecture Manual,
Version 9): a, cc0, cc1, cc2, cmask, cond, d16hi, d16lo, disp19, disp22, disp30,
fcn, i, imm22, imm_asi, mmask, op, op2, op3, opf, opf_low, p, rcond, rd, rs1,
rs2, shcnt32, shcnt64, simm10, simm11, simm13, sw_trap, x.

The only supported field for the x86 target is prefix which is a bit field that can be
tested with the following constants: SIM_DI_PREFIX_F0_BIT, SIM_DI_PREFIX_
F2_BIT, SIM_DI_PREFIX_F3_BIT, SIM_DI_PREFIX_CS_BIT, SIM_DI_PREFIX_
SS_BIT, SIM_DI_PREFIX_DS_BIT, SIM_DI_PREFIX_ES_BIT, SIM_DI_PREFIX_
FS_BIT, SIM_DI_PREFIX_GS_BIT, SIM_DI_PREFIX_OPERAND_SIZE_BIT, SIM_
DI_PREFIX_ADDRESS_SIZE_BIT and SIM_DI_PREFIX_SSE_BIT.

Note that certain fields are only available for certain instructions, thus accessing simm13
when i is 0 will be illegal.

The instruction has to be decoded in order to use this function. See SIM_instruction_
proceed.

EXCEPTIONS
General Thrown if the instruction is not decoded.
Index Thrown if ii is illegal, or if the field is illegal.

RETURN VALUE
The value of the field.

DISCLAIMER
This function may be changed in future and be replaced by an alternative mechanism
for reading the fields.
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A.1. Micro Architecture API Functions

SIM_instruction_get_reg_info()

NAME
SIM_instruction_get_reg_info — get info about instruction register

SYNOPSIS

reg_info_t *
SIM_instruction_get_reg_info(instruction_id_t ii,

int n);

DESCRIPTION
This function can by used to get information about which register an instruction uses
as input and/or output. The function takes as arguments the instruction id, ii, and a
number for the n:th used register. If successful, a pointer to a reg_info_t will be
returned. The structure is only available for immediate use. 0 is return if there is no
n:th register. Typically this function is used in a loop to retrieve all registers until it
returns 0.

The reg_info_t is defined like this:

struct reg_info {

register_type_t type; /* register type */

register_id_t id; /* register id */

unsigned input:1; /* used as input */

unsigned output:1; /* used as output */

};

The register_id_t refers to the different registers of the architecture in question.
Only registers that are targets for register renaming are reported by this function.

EXCEPTIONS
General If the instruction is not decoded.
Index Thrown if ii is illegal.

RETURN VALUE
pointer to a reg_info_t structure or NULL if there is no n:th register.

SEE ALSO
SIM_instruction_read_input_reg
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A.1. Micro Architecture API Functions

SIM_instruction_get_user_data()

NAME
SIM_instruction_get_user_data, SIM_instruction_set_user_data — get/set instruc-
tion user data

SYNOPSIS

lang_void *
SIM_instruction_get_user_data(instruction_id_t ii);

void

SIM_instruction_set_user_data(instruction_id_t ii,

lang_void *data);

DESCRIPTION
These two functions are used to set and get user defined data for instruction identified
by ii. This is a convenient way to add extra information to an instruction. Note that
this information needs to be deallocated by the user before SIM_instruction_end is
called.

If an instruction is squashed the Instruction_Squashed hap should be used to handle
the deallocation of user data.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
SIM_instruction_get_user_data returns the user data.
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A.1. Micro Architecture API Functions

SIM_instruction_handle_exception()

NAME
SIM_instruction_handle_exception — handle exception

SYNOPSIS

instruction_error_t

SIM_instruction_handle_exception(instruction_id_t ii);

DESCRIPTION
When SIM_instruction_proceed or one of its shortcuts returns Sim_IE_Exception
an exception has occurred. The exception should be handled by an explicit call to
SIM_instruction_handle_exception with the faulting instruction’s id as input.

The CPU needs to be synchronized to handle an exception. This is achieved by drain-
ing the instruction tree so that all instructions before the faulting one are committed
and all later instructions are discarded. Exceptions can also be handled if the instruc-
tion is not inserted in the tree and the tree is empty. This can happens if an instruction
gets an exception in the fetch or decode phase and the instruction is not inserted in the
tree.

Speculative instructions that cause exceptions cannot be handled. If this is what the
user wants SIM_instruction_force_correct can be used to remove the speculative sta-
tus before the exception is handled. This is strongly discouraged since it may lead to
incorrect execution.

The effect of calling SIM_instruction_handle_exception is to set the program counter
to the first instruction in the corresponding exception handler and to update other
architectural state that are affected when an exception occurs.

The exception is automatically “committed” so there is no need to call SIM_instruction_
proceed or SIM_instruction_commit.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
Sim_IE_OK on success,
Sim_IE_Code_Breakpoint if the instruction had a code breakpoint,
Sim_IE_Step_Breakpoint if a step breakpoint was encountered,
Sim_IE_Hap_Breakpoint if the exception caused an hap breakpoint,
Sim_IE_No_Exception if trying to handle an the exception on a non-faulting in-
struction,
Sim_IE_Speculative if trying to handle an exception from a speculative instruc-
tion,
Sim_IE_Illegal_Exception_Point if the tree contains other instructions.
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A.1. Micro Architecture API Functions

SIM_instruction_handle_interrupt()

NAME
SIM_instruction_handle_interrupt — handle interrupt

SYNOPSIS

instruction_error_t

SIM_instruction_handle_interrupt(conf_object_t *cpu,

exception_type_t vector);

DESCRIPTION
Interrupts are caught in the Micro Architectural Interface by installing an callback
handler on the Core_Asynchronous_Trap hap. This callback will be called when an
interrupt or an asynchronous trap occurs. The callback gets the interrupted CPU and
the trap vector number associated with the interrupt as arguments (see the hap docu-
mentation for details).

To handle the interrupt SIM_instruction_handle_interrupt should be called with the
CPU and the trap vector as arguments. The effect of this call is to set the program
counter to the first instruction in the corresponding trap handler and to update other
architectural state that are affected when an interrupt occurs.

Currently the instruction tree needs to be empty when an interrupt is handled. This
is achieved either by squashing all instructions or letting all of them commit before
SIM_instruction_handle_interrupt is called.

Interrupts may be disabled (by software or hardware) after the hap triggers but before
SIM_instruction_handle_interrupt is called, if this is the case Sim_IE_Interrupts_
Disabled will be returned. The interrupts should then be handled as soon as the
interrupts are enabled again.

RETURN VALUE
Sim_IE_OK on success,
Sim_IE_No_Exception if vector is No_Exception,
Sim_IE_Interrupts_Disabled if interrupts are disabled,
Sim_IE_Illegal_Interrupt_Point if trying to handle an interrupt when the in-
struction queue is not empty.
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A.1. Micro Architecture API Functions

SIM_instruction_id_from_mem_op_id()

NAME
SIM_instruction_id_from_mem_op_id — return instruction id

SYNOPSIS

instruction_id_t

SIM_instruction_id_from_mem_op_id(conf_object_t *cpu, int mem_trans_id);

DESCRIPTION
Given the memory_transaction id mem_trans_id this function returns the correspond-
ing instruction id.

RETURN VALUE
The instruction id of the instruction corresponding to the memory transaction id, or
NULL if no instruction match.
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A.1. Micro Architecture API Functions

SIM_instruction_insert()

NAME
SIM_instruction_insert — link instructions

SYNOPSIS

void

SIM_instruction_insert(instruction_id_t parent_ii,

instruction_id_t ii);

DESCRIPTION
This function links together instructions created by SIM_instruction_begin. The link-
ing helps the user to keep track of dependences between instructions and as default,
Simics will not accept any dependence violation. To model different (speculative) ex-
ecution paths instructions can be linked together to form a tree (instruction tree). The
instructions in a tree branch should be ordered in program execution order.

ii is the instruction to insert and ii_parent is the instruction id of the parent instruction.
If zero the instruction will be inserted as child to the last inserted one, or as the root if
the the tree is empty.

If the parent instruction already has a child the new instruction will be added as an-
other child, thus creating an alternative execution path for the parent.

Instructions can be inserted in the tree after they are fetched and decoded (using SIM_
instruction_proceed or similar), but must be inserted before they are executed. This is
useful if different instruction should be inserted at different places. For example the
instruction after a delay slot have a different parent depending on whether the delay
slot can be annulled or not.

Instructions are automatically removed from the tree when they are committed (SIM_
instruction_proceed/SIM_instruction_commit) or squashed (SIM_instruction_squash).

SEE ALSO
SIM_instruction_begin, SIM_instruction_proceed
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SIM_instruction_is_sync()

NAME
SIM_instruction_is_sync — check for sync instruction

SYNOPSIS

int

SIM_instruction_is_sync(instruction_id_t ii);

DESCRIPTION
Some instructions need to synchronize the pipeline and cannot run out of order. This
function checks if the instruction identified by ii needs to synchronize the CPU. Such
instructions need to be executed non-speculatively. The reason for this limitation is
that synchronizing instructions may update CPU state that cannot be restored.

There are currently two types of synchronizing instructions, category 1 and category
2. An instruction in category 1 can only be executed if all previous instructions in the
tree has been executed (reached the Sim_Phase_Executed) non-speculatively. An
instruction in category 2 has to be alone in the instruction tree to be able to execute.

Note that this is a Simics limitation and not an architectural limitation. The instruc-
tions that can execute out of order may change in future.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
1 for category 1, 2 for category 2, and 0 for non-synchronous.
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SIM_instruction_length()

NAME
SIM_instruction_length — return the instruction length

SYNOPSIS

int

SIM_instruction_length(instruction_id_t ii);

DESCRIPTION
Returns the instruction length of the instruction identified by ii (in bytes).

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
The length of the instruction in the instruction queue.
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SIM_instruction_nth_id()

NAME
SIM_instruction_nth_id — get id of nth instruction

SYNOPSIS

instruction_id_t

SIM_instruction_nth_id(conf_object_t *cpu, int n);

DESCRIPTION
Get the instruction id (instruction_id_t) of the instruction at position n in the
“first” branch of the instruction tree of processor cpu. The root instruction has position
0. The first branch is defined to be the branch of the first child (number 0) in every
instruction. See SIM_instruction_child. If successful the function will return an non-
zero id. For illegal positions zero is returned.

This function may only be useful if the tree is actually a list or if the root of the tree is
requested.

RETURN VALUE
The id of the requested instruction or zero if non-existing.

SEE ALSO
SIM_instruction_id_from_mem_op_id
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SIM_instruction_opcode()

NAME
SIM_instruction_opcode — get the opcode of the instruction

SYNOPSIS

attr_value_t

SIM_instruction_opcode(instruction_id_t ii);

DESCRIPTION
Returns the opcode of an instruction as a attr_value_t. If the instruction fits in a
64 bits integer, it will be returned as a Sim_Val_Integer, otherwise as a Sim_Val_
Data.

If the opcode is unknown, i.e. the instruction has not yet been fetched, Sim_Val_Nil is
returned.

RETURN VALUE
The value of the opcode.
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SIM_instruction_phase()

NAME
SIM_instruction_phase — get instruction phase

SYNOPSIS

instruction_phase_t

SIM_instruction_phase(instruction_id_t ii);

DESCRIPTION
Returns the phase the instruction with id ii has successfully passed. See SIM_instruction_
set_stop_phase for a description of the different phases.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
The last completed phase.
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SIM_instruction_proceed()

NAME
SIM_instruction_proceed, SIM_instruction_fetch, SIM_instruction_decode, SIM_
instruction_execute, SIM_instruction_retire, SIM_instruction_commit — proceed to
next instruction phase

SYNOPSIS

instruction_error_t

SIM_instruction_proceed(instruction_id_t ii);

instruction_error_t

SIM_instruction_fetch(instruction_id_t ii);

instruction_error_t

SIM_instruction_decode(instruction_id_t ii);

instruction_error_t

SIM_instruction_execute(instruction_id_t ii);

instruction_error_t

SIM_instruction_retire(instruction_id_t ii);

instruction_error_t

SIM_instruction_commit(instruction_id_t ii);

DESCRIPTION
This function advances the instruction ii to the next stop phase as set by SIM_instruction_
set_stop_phase.

The defined phases are the following:

typedef enum instruction_phase {

Sim_Phase_Initiated,

Sim_Phase_Fetched,

Sim_Phase_Decoded,

Sim_Phase_Executed,

Sim_Phase_Retired,

Sim_Phase_Committed,

Sim_Phases

} instruction_phase_t;
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For convenience there are some predefined functions that can be used to proceed to
the phases above.

SIM_instruction_fetch(id) will proceed to Sim_Phase_Fetch.

SIM_instruction_decode(id) will proceed to Sim_Phase_Decoded.

SIM_instruction_execute(id) will proceed to Sim_Phase_Executed.

SIM_instruction_retire(id) will proceed to Sim_Phase_Retired.

SIM_instruction_commit(id) will proceed to Sim_Phase_Committed.

Fetching an instruction means that the memory used by the instruction is loaded. This
may stall the CPU and SIM_instruction_proceed will signal this by returning Sim_
IE_Stalling. The instruction can then be proceeded to the next phase as soon as
the stalling period is over (see SIM_instruction_remaining_stall_time).

To fetch an instruction a valid program counter is needed. The value of the program
counter is read from the register bank for the first instruction in the tree and for in-
structions not inserted in the tree. For instructions that have an executed parent the
program counter will have the value produced by the parent. SIM_instruction_write_
input_reg can also be used to explicitly set the program counter. This is the only way
to fetch instructions whose parent has not yet executed and thus not produced a new
program counter. This will also mark the instruction as speculative. As soon as the
parent instruction is executed the child will become non-speculative again if the pro-
duced value matches the one set (if the parent was non-speculative). For miss-matches
we will get a speculative instructions that needs to be squashed.

All the above also apply to the next program counter if the architecture has delay slots.

When an instruction is fetched SIM_instruction_opcode can be used to retrieve the
opcode.

Decoding means interpreting the fetched data and translate it to a determined instruc-
tion. It is then possible to use SIM_instruction_type to determine the type of the in-
struction and SIM_instruction_get_reg_info to find the registers used by the instruc-
tion.

Executing an instruction means that the actual operation is performed. Thus input
values are used to produce output values. The input values used are collected from
previously executed instructions (or the register bank) and the output values will be
available for later instructions. Simics has no restrictions on the number of tempo-
ral values that can exists between instruction. This can be viewed as an unlimited
resource of internal registers for register renaming.

To be able to execute the instruction all the input values must have been produced,
i.e. all dependences must be fulfilled. This is done either by executing all instructions
that the instruction depends on or explicitly set the value of an input register by using
SIM_instruction_write_input_reg. As with the program counter above the latter case
will also make the instruction speculative until an earlier instruction produces the
same value. This is how value speculation can be handled.

Sim_IE_Unresolved_Dependences will be returned if an instruction is not ready
for execution.
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Instructions that access memory may stall and Sim_EI_Stalling will be returned.
As with instruction fetches the instruction can be proceeded again as soon as the
stalling period is over.

Retiring an instruction sends all speculative stores to memory. The instruction must be
non-speculative to enter this phase. The instruction may stall since the stores are sent
to the memory hierarchy. The instruction may also get an exception (like a memory
parity error). Retiring an instruction can be done out-of-order.

When committing an instruction the output values produced by the instruction are
copied to the register bank. The instruction is automatically removed from the in-
struction tree, but it must be deallocated explicitly by calling SIM_instruction_end. In-
structions marked as speculative cannot be committed. This can be forced by the user
by calling SIM_instruction_force_correct to remove the speculative status before com-
mitting. This is strongly discouraged since it may lead to incorrect execution. Also,
the instruction may only have one valid execution path left, all alternative branches
have to be squashed before the instruction can be committed.

Certain return values needs special actions to be taken. If some of the functions re-
turns Sim_IE_Exception an exception occurred and the execution of the instruc-
tion is aborted. The exception should be handled by calling SIM_instruction_handle_
exception on the faulting instruction. This call will set the program counter to the first
instruction in the corresponding exception handler.

If Sim_IE_Speculative is returned it means a speculative instruction tried to com-
mit.

If Sim_IE_Sync_Instruction is returned it means that a synchronizing instruction
was executed in a speculative state. Synchronizing instructions have to be executed in
non-speculative state since they cannot be squashed.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
Sim_IE_OK on success,
Sim_IE_Code_Breakpoint if a code breakpoint was encountered in the commit
phase,
Sim_IE_Step_Breakpoint if a step breakpoint was encountered in the commit
phase,
Sim_IE_Exception if the instruction raised an exception,
Sim_IE_Unresolved_Dependencies if the instruction are not allowed to execute
due to unresolved dependences,
Sim_IE_Speculative if trying to commit a speculative instruction,
Sim_IE_Stalling if the instruction stalled on a memory access,
Sim_IE_Sync_Instruction if trying to execute a synchronizing instruction in an
illegal way.
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SIM_instruction_read_input_reg()

NAME
SIM_instruction_read_input_reg, SIM_instruction_read_output_reg, SIM_instruction_
write_input_reg, SIM_instruction_write_output_reg — read/write register values

SYNOPSIS

attr_value_t

SIM_instruction_read_input_reg(instruction_id_t ii,

register_id_t ri);

attr_value_t

SIM_instruction_read_output_reg(instruction_id_t ii,

register_id_t ri);

void

SIM_instruction_write_input_reg(instruction_id_t ii,

register_id_t ri,

attr_value_t val);

instruction_error_t

SIM_instruction_write_output_reg(instruction_id_t ii,

register_id_t ri,

attr_value_t val);

DESCRIPTION
SIM_instruction_read_input_reg returns the value of an input register for instruction
ii identified by the register id ri. The register id:s for a particular instruction can be
retrieved by a calling SIM_instruction_get_reg_info.

For integer and control registers the attr_value_twill be of kind Sim_Val_Integer.
Floating point registers uses also the Sim_Val_Integer kind but the floating point
number is stored as raw bits. Only single precision registers can be read, thus to read
a double precision register both its low and high half must be read in separate calls.
For quad precision registers four calls are required (SPARC).

Sim_Val_Nil will be returned if the value has not yet been produced by earlier in-
structions (see below).

The value is not read from the architecturally register state but from an internal re-
named register which holds the input value of the corresponding register. Thus read-
ing the same register from different instructions may yield different values even in the
same cycle.

The value read is either produced by an previously executed instruction (this requires
that the instructions are inserted in the tree and decoded) or explicitly set by the user
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using SIM_instruction_write_input_reg. In the later case the instruction will be re-
garded as speculative until an earlier non-speculative instruction produces the same
value. If this never happens the instruction cannot be committed without the risk of
executing incorrectly. This is how value prediction can be modeled (see the descrip-
tion of SIM_instruction_write_output_reg below as well).

SIM_instruction_proceed and SIM_instruction_commit will not accept a speculative
instruction to commit. If this is requested the user needs to call SIM_instruction_
force_correct first to redirect the correct execution path. This is however strongly dis-
couraged since it may lead to incorrect execution.

SIM_instruction_read_output_reg reads the output value of a register from the in-
struction. This requires the instruction to be executed first.

SIM_instruction_write_output_reg writes the output register for an instruction. This
is a convenient way of handling value speculation. The value written will propa-
gate down the instruction tree exactly as if SIM_instruction_write_input_reg had been
used for all instructions that use the value. This function can only be used for instruc-
tions that have not yet reached the execution phase.

EXCEPTIONS
Index Thrown if ii is illegal or if ri is an illegal register.

RETURN VALUE
attr_value_t/Sim_Val_Integer on success,
attr_value_t/Sim_Val_Nil if the value is not yet produced,
SIM_instruction_write_output_reg returns Sim_IE_Illegal_Phase if the instruc-
tion has reached the execution phase.

SEE ALSO
SIM_instruction_get_reg_info
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SIM_instruction_remaining_stall_time()

NAME
SIM_instruction_remaining_stall_time — get stalling time

SYNOPSIS

cycles_t

SIM_instruction_remaining_stall_time(instruction_id_t ii);

DESCRIPTION
Returns the remaining time in cycles the instruction ii has to stall. Only applicable if
SIM_instruction_status() & Sim_IS_Stalling is non-zero.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
The stalling time in cycles.
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SIM_instruction_rewind()

NAME
SIM_instruction_rewind — rewind phase of instructions

SYNOPSIS

instruction_error_t

SIM_instruction_rewind(instruction_id_t ii, instruction_phase_t phase);

DESCRIPTION
This function is used to undo the action taken by one or more phases of an instruction.
Contrary to SIM_instruction_squash, the instruction is not removed from the tree and
deallocated. This can by useful if for example speculative data was used during a
phase and it has been proved wrong later. It is then possible to rewind that phase and
try again.

phase is the phase to rewind instruction ii to.

Currently the only phase that can be rewinded is the execution phase.

It is not possible to rewind a stalling instruction. The stalling must be finished before
the instruction can be rewinded.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
Returns Sim_IE_OK on success, Sim_IE_Illegal_Rewind_Phase if this phase cannot be
rewinded, or Sim_IE_Stalling if the instruction is stalling.
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SIM_instruction_set_stop_phase()

NAME
SIM_instruction_set_stop_phase — set breakpoint on instruction phase

SYNOPSIS

void

SIM_instruction_set_stop_phase(conf_object_t *NOTNULL cpu,

instruction_phase_t phase,

int on);

DESCRIPTION
This function is used to instruct Simics on which instruction phases SIM_instruction_
proceed should stop on. The defined phases are currently:

typedef enum instruction_phase {

Sim_Phase_Initiated,

Sim_Phase_Fetched,

Sim_Phase_Decoded,

Sim_Phase_Executed,

Sim_Phase_Retired,

Sim_Phase_Committed,

Sim_Phases

} instruction_phase_t;

Thus SIM_instruction_set_stop_phase(cpu, Sim_Phase_Executed, 1) will cause every
call to SIM_instruction_proceed(cpu, ii) to advance instruction ii to the point where its
semantics has been executed.

63



A.1. Micro Architecture API Functions

SIM_instruction_speculative()

NAME
SIM_instruction_speculative — check if speculative instruction

SYNOPSIS

int

SIM_instruction_speculative(instruction_id_t ii);

DESCRIPTION
Note: this function was previously called SIM_instruction_wrong_path.

This function check whether an instruction will execute or has executed using spec-
ulative input, i.e. the instruction may give incorrect result if committed. Speculative
input can be used to model branch and value prediction, see SIM_instruction_write_
input_reg and SIM_instruction_write_output_reg for a description on how to write
speculative data.

ii is the id of the instruction to check,

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
Returns 1 for executing with speculative input, otherwise 0.
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SIM_instruction_squash()

NAME
SIM_instruction_squash — rollback instructions

SYNOPSIS

instruction_error_t

SIM_instruction_squash(instruction_id_t ii);

DESCRIPTION
This function is used to rollback the action taken by an instruction and its children.
This is needed for example when speculation has gone wrong and the state of the
CPU must be reset to a point that is consistent with program order. This function will
also call SIM_instruction_end for every instruction squashed to deallocate the data
structures for the instruction.

If the hap Instruction_Squashed has been installed the associated callback will be
called for each instruction before it is deallocated. This is useful for example if user
data has been added to the instruction.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
Returns Sim_IE_OK on success, Sim_IE_Not_Inserted if the instruction is not inserted
in the tree, Sim_IE_Sync_Instruction if there is a synchronous instruction in the tree
that cannot be squashed, or Sim_IE_Retired_Instruction if there is a retired instruction
in the tree.

SEE ALSO
SIM_instruction_rewind
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SIM_instruction_stalling_mem_op()

NAME
SIM_instruction_stalling_mem_op — get stalling mem op

SYNOPSIS

generic_transaction_t *
SIM_instruction_stalling_mem_op(instruction_id_t ii);

DESCRIPTION
Returns the memory transaction that the instruction with id ii is currently stalling on.
If there is no stalling transaction NULL is returned.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
The stalling memory transaction or NULL if the instruction is not stalling.
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SIM_instruction_status()

NAME
SIM_instruction_status — get instruction status

SYNOPSIS

instruction_status_t

SIM_instruction_status(instruction_id_t ii);

DESCRIPTION
Returns the instruction status of the instruction identified by ii. instruction_status_t
is a bit field of the following values:

Sim_IS_Ready means that the instruction have all its input ready and can be exe-
cuted (for the first time or after a stalling period), Sim_IS_Waiting means that the
instruction is waiting for its dependences to be ready, Sim_IS_Stalling indicates
that the instruction is stalling and does not have its output ready, Sim_IS_Faulting
means that the instruction has raised an exception, Sim_IS_Trap on x86 means that
the instruction has raised a trap, Sim_IS_Interrupt on x86 means that the interrupt
received must be handled before executing further instructions, see SIM_instruction_
phase), Sim_IS_Branch_Taken means that the branch was taken for a branch in-
struction.

If both Sim_IS_Stalling and Sim_IS_Ready are set it indicates that the instruc-
tion has completed its stalling period and needs to be executed (proceeded) again to
make another call to the memory hierarchy, which this time presumably will “unstall”
the instruction.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
The status of the instruction in the instruction queue.
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SIM_instruction_store_queue_mem_op()

NAME
SIM_instruction_store_queue_mem_op — get store queue transaction

SYNOPSIS

generic_transaction_t *
SIM_instruction_store_queue_mem_op(instruction_id_t ii, int i);

DESCRIPTION
Returns the i:th memory transaction that the instruction has put into the store queue.
The value to be stored can be retrieved by calling SIM_get_mem_op_value on the re-
turned transaction. If i is out of range, NULL will be returned.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
The i:th memory transaction or NULL if there is no such transaction.
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SIM_instruction_type()

NAME
SIM_instruction_type — return the instruction type

SYNOPSIS

instr_type_t

SIM_instruction_type(instruction_id_t ii);

DESCRIPTION
Returns the instruction type of the instruction identified by ii in the instruction queue.
instr_type_t is a bit-field of the different instruction types. Currently only It_Load,
It_Store, and It_User_Decoder_Defined are available. For instructions that
swap data both It_Load and It_Store are set.

EXCEPTIONS
Index Thrown if ii is illegal.

RETURN VALUE
The type of the instruction in the instruction queue.
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Appendix B

SPARC-V9 Instructions

Here follows a list of the SPARC instructions that cannot run out of order. The synchronous
column tells if the instructions falls into category 1 or 2. Category 1 means that the instruc-
tions can only be executed if all earlier instructions in the instruction tree has been executed.
Category 2 means that the instruction can only be executed if it is the only instruction in the
tree. For comments see below.

Instruction synchronous comment
CASA 2
CASXA 2
DONE 2
FLUSH 1
FLUSHW 2
ILLTRAP 2 1
LD(SB,SH,SW,UB,UH,UW,X)A 2
LDDA 2
LDDFA 2
LDFA 2
LDFSR 2
LDQFA 2
LDSTUBA 2
LDXFSR 2
MEMBAR 2
PREFETCHA 2
RDSTICK 1
RDTICK 1
RETRY 2
ST(B,H,W,X)A 2
STBAR 2
STDA 2
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Instruction synchronous comment
STDFA 2
STFA 2
STFSR 2
STQFA 2
STXFSR 2
SWAPA 2
Tcc 2 1
WRASR 2 3
WRPR 2 4

Comments:

1. The instruction will cause an exception which makes it synchronous

2. If the ASI used by the instruction changes mappings in the MMU the instruction will
be synchronous of category 2 otherwise it is not synchronous.

3. Writes to the registers %y, %ccr, %asi, %pc are NOT synchronous.

4. Writes to the registers %cansave, %canrestore, %otherwin, and %cleanwin are NOT
synchronous.
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Appendix C

x86 Instructions

Synchronized instructions of type 1:

ENTER allocate stack space when entering procedure
POPA(D) pop all registers from stack
PUSHA(D) push all registers onto the stack

Synchronized instructions of type 2:

CALL call procedure (in other seg.)
CLFLUSH Flushes cache lines
CLI clear interrupt flag
CLTS clear task-switched flag in CR0
CPUID returns processor identification information
EMMS empty MMX state
FP instr.
FXRSTOR restore x87 FPU, MMX, XMM, and MXCSR state
HLT halt
IN input from port; fixed port
IN nput from port; variable port
(REP) INS input from DX port
INT1
INT n interrupt type n
INTO interrupt 4 on overflow
INT single step interrupt 3
INVD invalidate cache
INVLPG Invalidate TLB Entry
IRET/IRETD interrupt return
JMP unconditional jump (to other seg.)
JMP unconditional jump (to other seg.)
LDMXCSR Load MXCSR
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LDS load pointer to DS
LES load pointer to ES
LFENCE Serializes load operations
LFS load pointer to FS
LGDT Load Global Descriptor Table Register
LGS load pointer to GS
LLDT Load Local Descriptor Table Register
LMSW Load Machine Status Word
LOCK prefixed instr.
LSS load pointer to SS
LTR Load Task Register
MFENCE Serializes load and store operations
MOV data to segment register
MOV move to control register
MOV move to debug register
OUT output to port; fixed port
OUT output to port; variable port
OUTS output to DX port
POP pop top of stack into DS
POP pop top of stack into FS
POP pop top of stack into GS
PUSH push CS onto the stack
PUSH push DS word onto the stack
PUSH push ES onto stack
PUSH push SS onto stack
RET return from procedure (to other seg)
RSM resume from system management mode
SFENCE Serializes store operations
STI set interrupt flag
SYSENTER fast call to pl 0 system procedures
SYSEXIT fast return from fast system call
WAIT wait
WBINVD write-back and invalidate data cache
WRMSR write to model-specific register
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Symbols
[simics], 6
[workspace], 6

A
address calculation phase, 23
anti-dependencies, 12
architectural state, 15, 20–23
Asynchronous_Trap, 22
atomic instructions, 25, 26
atomic operations, 25, 26
auto_speculate_cwp, 32

B
block operation, 20, 23
branch speculation, 31
Branch Target Buffer, 31
breakpoints, 36
BTB, 31

C
checkpoint, 23
checkpointing, 37
commit phase, 15, 21
commits_per_cycles, 30, 31
config_accept_no_stall, 29
config_max_out_trans, 28
config_read_per_cycle, 28
config_write_per_cycle, 28
consistency controller, 13, 22, 26
continue, 36
control dependence, 13
control speculation, 14
control transactions, 25
correct instruction, 14
CWP, 32
cycle handler, 17, 22, 35, 36

D
data speculation, 14
data-dependencies, 11
decode phase, 15, 20
dependences, 11
dependencies

anti, 12
control, 13
data, 11
memory, 13
name, 12
RAW, 11
register, 11
WAR, 11
WAW, 11

discarding instructions, 22

E
execute phase, 15, 20
execute_per_cycles, 30, 31

F
faulting (status), 15
faulting instruction, 21
fetch phase, 14, 19
fetches_per_cycles, 30, 31

G
g-cache, 28
g-cache-ooo, 28, 35
global commit phase, 15

I
incorrect instruction, 14
input values, 20
instruction

correct, 14
discarding, 22
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id, 19
incorrect, 14
phases, 19
speculative, 14, 20
squashing, 22

instruction fetches, 25, 29
instruction tree, 14
instruction-fetch-mode, 29
instruction-fetch-trace, 29
instruction_error_t, 38
instructions

synchronous, 22
interrupt (status), 15
interrupt vector, 22
interrupts, 22

L
load-load consistency, 26
load-store consistency, 26
load-store queue, 13
locking granularity, 26
locking ram, 26
locking transactions, 25
LSQ, 13, 15, 21, 23–26, 36

atomic instructions, 25
device loads, 24
device stores, 25
loads, 24
stores, 24

M
magic breakpoints, 36
memory consistency, 26
memory dependencies, 13
MESI, 28
multi-processors, 26
multiple outstanding transactions, 28

N
name-dependencies, 12
nPC, 20

O
ooo-micro-arch, 10, 30, 36
ooo_micro_arch, 30
out-of-order

retire, 21
out-of-order window, 14
out_of_order_retire, 31
output values, 20

P
page_cross, 29
Parameterized Mode, 10
phase, 14

commit, 15, 21
decode, 15, 20
execute, 15, 20
fetch, 14, 19
init, 14
retire, 15, 21

piq, 36
prefetch transactions, 25
prefetching (see explanations below), 26
print-instruction-queue, 35, 36
program counter, 20
program order consistency, 26

R
RAW, 11
read-after-write, 11
ready (status), 15
reg_info_t, 45
register renaming, 12
register-pool, 12
reorder_buffer_size, 31
retire phase, 15, 21
retires_per_cycles, 31
run, 36
run-cycles, 36

S
sample-micro-arch, 31, 35, 36
sample_micro_arch, 31
sc, 36
scs, 36
self-consistency, 13
SIM_break_cycle(cpu, 0), 36
SIM_break_simulation, 36
SIM_instruction_begin, 19, 39
SIM_instruction_child, 40
SIM_instruction_commit, 19, 36, 56
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SIM_instruction_cpu, 41
SIM_instruction_decode, 19, 20, 56
SIM_instruction_end, 21, 22, 42
SIM_instruction_execute, 19, 21, 56
SIM_instruction_fetch, 19, 56
SIM_instruction_force_correct, 21, 43
SIM_instruction_get_field_value, 44
SIM_instruction_get_reg_info, 20, 45
SIM_instruction_get_user_data, 46
SIM_instruction_handle_exception, 21, 36,

37, 47
SIM_instruction_handle_interrupt, 22, 36,

48
SIM_instruction_id_from_mem_op_id, 49
SIM_instruction_insert, 19, 50
SIM_instruction_is_sync, 22, 51
SIM_instruction_length, 52
SIM_instruction_nth_id, 53
SIM_instruction_opcode, 20, 54
SIM_instruction_parent, 40
SIM_instruction_phase, 55
SIM_instruction_proceed, 19–22, 36, 56
SIM_instruction_read_input_reg, 20, 59
SIM_instruction_read_output_reg, 59
SIM_instruction_remaining_stall_time, 20,

61
SIM_instruction_retire, 19, 56
SIM_instruction_rewind, 62
SIM_instruction_set_right_path, 43
SIM_instruction_set_stop_phase, 19, 63
SIM_instruction_set_user_data, 46
SIM_instruction_speculative, 64
SIM_instruction_squash, 22, 65
SIM_instruction_stalling_mem_op, 66
SIM_instruction_status, 67
SIM_instruction_store_queue_mem_op, 68
SIM_instruction_type, 20, 69
SIM_instruction_write_input_reg, 20, 21, 59
SIM_instruction_write_output_reg, 59
SIM_instruction_wrong_path, 64
SMP, 17
SMT, 17
speculation

control, 14
data, 14

speculation points, 14
speculative

path, 14
squash, 22
squashing instructions, 22
stalling (status), 15
status

faulting, 15
interrupt, 15
ready, 15
stalling, 15
trap, 15
waiting, 15

STC, 28
step-break, 36
step-break-absolute, 36
step-cycle, 36
step-cycle-single, 36
step-instruction, 36
store queue, 13
store transaction, 24
store-load consistency, 26
store-store consistency, 26
swap instructions, 26
synchronous instructions, 22
synchronous registers, 13

T
trap (status), 15

V
value prediction, 31

W
waiting (status>), 15
WAR, 11
WAW, 11
write-after-read, 11
write-after-write, 11
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