
Computer Architecture and Engineering
CS152 Quiz #2
March 7th, 2011

Professor Krste Asanović

 Name: <ANSWER KEY>

This is a closed book, closed notes exam.
80 Minutes
 14 Pages

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not

yet taken the quiz. If you have inadvertently been exposed to a quiz prior
to taking it, you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without
giving explanations if the instruction ask you to explain your choice.

Writing name on each sheet ________ 2 Points
Question 1 ________ 30 Points
Question 2 ________ 24 Points
Question 3 ________ 24 Points

TOTAL ________ 80 Points

Name _________(answer key)________

Page 1 of 14

Question 1: Column-Associative Caches
(30 points)
In this problem we analyze two different proposals for a cache to be used in a high-
performance processor. We care about both the cycle time (which is limited by the cache
hit access time) and the miss rate.

The first proposal is for a two-way set-associative cache (see Appendix B). The second
design comes from Agarwal and Pudar, who proposed a column-associative cache in
1993. They recognized the main advantage of direct-mapped caches is their fast hit time,
but their main disadvantage is the large number of conflict misses. A set-associative
cache can improve the miss rates over the direct-mapped cache, but its hit time is worse
because the expensive tag checks are placed on the critical path.

The column-associative cache aims to achieve the hit time of a direct-mapped cache, but
with the lower miss rate of a two-way set-associative cache. The design of this cache is
shown below in Figure 2. It’s probably best to think of it as a two-way cache, but that
data is always read out of Way0.

If the memory access is a hit in Way0, then the processor continues as normal (a “fast
hit”). If it misses in Way0, then Way1 is checked for the memory line. If there is a hit in
Way1, then the data from Way1 is returned to the processor (the “slow hit”) and the
cache lines in Way0 and Way1 are swapped (so that the next access to the line will be a
fast hit in Way0). If both ways miss, Way1 is evicted, Way0’s cache line is moved to
Way1, and the accessed memory is allocated to Way0. In short, the most-recently-used
line is always moved to Way0.

Figure 1. Column-Associative Cache Behavior

Memory Access
(check way0)

fast hit miss

return data
from way0

check way1

1) swap ways
2) return data from
way 0

slow hit miss

1) evict way1
2) move data in way0 to way1
3) fetch accessed address
into way0

Name _________(answer key)________

Page 2 of 14

A “fast hit” returns data in a single cycle (hit time = 1 cycle). A “slow hit” takes 4
cycles:
 1st cycle - detect miss in Way0
 2nd cycle - check Way1’s tag, write Way0 and Way1 to the swap registers
 3rd cycle - swap ways (on tag hit for Way1)
 4th cycle - read out the data (now located in Way0)

De
co

de
r

MUX

Data Output
Driver

Tag Index Offset
Input Address

Way0 Way1

Data Memory Array

tag
check

way swap
datapath

indexindex

swap
registers

hit

Figure 2. Column-Associative Cache Datapath

Q1.A: Cache parameters (2 points)
Fill out the following table of cache parameters. The address size is 32 bits, the index
size is 8 bits, and the block offset size is 4 bits (note: these parameters will hold for the
rest of Question 1).

2-way set-associative column-associative
tag size (bits) 20 bits 20 bits

line size (bytes) 2^(blk_offset_sz) = 16 bytes 16 bytes

number of sets 2^(index_sz) = 256 sets 256 sets

cache capacity (KB) 256*16*2=8192 bytes (8KB) 256*16*2=8192 bytes (8KB)

Table 1. Cache Parameters

Name _________(answer key)________

Page 3 of 14

Q1.B: Critical Paths (8 points)

Using Figure 1, Figure B-1 (found in Appendix B), Table 1, and Table 2, determine and
explain what the critical path is for both the two-way set-associative cache (SA) and the
column-associative cache (CA). Also, determine the cache access time (ps) for both
configurations (i.e., the delay through the critical path).

Component Delay equation (ps) 2-way set
associative

column-
associative

Decoder 20×(# of index bits) + 60 Tag 220 220Decoder 20×(# of index bits) + 60
Data 220 220

Memory array 20×log2 (# of rows) +
20×⎣log2 (# of bits in a row)⎦+100

Tag 360 340*Memory array 20×log2 (# of rows) +
20×⎣log2 (# of bits in a row)⎦+100 Data 420 400*

Comparator 20×(# of tag bits) + 50 Tag 450 450
2-input AND 40 40 40
2-input OR 100 100 100
N-to-1 MUX 50×log2 N + 200 300 300
Buffer driver 190 190 190
Data output driver 90×(associativity) + 100 280 190
Valid output driver 50 50 50

Table 2. Delay of each cache component

*Note: For the column-associative cache, you only need to consider the fast-hit scenario.
In this case, only Way0 needs to be accessed, allowing it to have a faster memory array
access time. You can also ignore the tag check path in the column-associative cache. We
promise it’s not on the critical path.

SA Critical Path:
tag decoder->tag array->comparator->AND->buffer driver->data output driver
= 220+360+450+40+190+280= 1540ps

CA Critical Path:
decoder->memory array (only way0)-> mux->data output driver
= 220+400+300+190=1110ps

SA Access Time : 1540 ps
CA Access Time : 1110 ps

Name _________(answer key)________

Page 4 of 14

The following questions evaluate the cache performance of the following C code, which
performs an in-place vector-vector add. A vector A and a vector B are added together.
The result is this written back to vector A. Pseudo-disassembly of the inner loop is shown
on the right.

#define N 4096
int A[N], B[N];
int i;

for(i = 0; i < N; i++)
 A[i] = A[i] + B[i];

Assume A and B are cache aligned to a 4KB boundary and are contiguous in memory.
ints are 32 bits (4 bytes).

Also assume that the caches will use the parameters found in Table 1: Cache Parameters.

Q1.C: Miss-rates? (2 points)

What is the miss-rate for the two-way set-associative (using LRU) and column-
associative caches running the above code? (percentage of memory accesses that
completely miss in the cache and require fetching the data from main memory?).

By the stated definition of miss-rate, both the SA and CA caches will look identical.

cache line size found in Q1.A = 16 bytes, or 4 elements.

This is a unit-stride walk through memory, so the first access to each array will be a
compulsory miss, but spatial locality will allow us to hit on the next 3 elements.

Each inner loop is 3 accesses, and when i%4==0 that’s two misses, but the next 3*3+1
accesses will hit (i.e., the next 3 iterations, plus the store to A in the first iteration).

So miss_rate = 2 misses / 12 accesses = 16.67%.

(both A[i] and B[i] will map to the same index, but because it’s two-way, they won’t kick
each other out).

SA cache: _16.67%

CA cache: _16.67%

Name _________(answer key)________

Page 5 of 14

rA holds the addr to A[i]
rB holds the addr to B[i]
LD r2,0(rB)
LD r1,0(rA)
ADD r1,r1,r2
ST r1,0(rA)

Q1.D: Hit-rates? (2 points)
What is the hit-rate running the above code for the two-way set-associative (using LRU)
and the column-associative cache?
For the SA cache: hit-rate = (100% - miss_rate), so 83.33%.

For the CA cache:

Both A[i] and B[i] will map to the same index, but because it’s two-way, they won’t kick
each other out. However, if B[i] is in Way0, an access to A[i] will kick B[i] to Way1 (and
vice versa).

For every 12 accesses (4 loop iterations, 3 inner accesses per loop), first iteration is 2
cache misses, 1 fast hit. the next three iterations will all slow hit the loads, and fast hit
the store.
so fast_hit = 4/12 = 33.33%
and slow_hit = 6/12 = 50.%

-1 for people who said 2/3 slow hits, 1/3 fast hits, and didn’t factor in the first iteration.

 SA cache:__83.33%
CA cache:__33.33% (fast hit rate)

__50.00% (slow hit rate)

Q1.E: AMAT (4 points)
What is the Average Memory Access Time from running the above code for the two-way
set-associative and the column-associative cache? Assume the miss penalty is 100 ns.
Also assume that the processor’s clock speed is limited by the cache access time, which
was computed in Q1.B.

For the SA cache:
AMAT_sa = hit_time + miss_rate*miss_penalty
AMAT_sa = 1 cycle (1.54ns/cyc) + (.1667)*100ns = 1.54ns+16.67ns = 18.21ns

Note that the fast_hit_time is always paid for, because you always have to eat a cycle to detect if a miss
occurred before you can initiate the miss sequence.

An other way to think of this is:

AMAT_sa = hit_rate*hit_time + miss_rate*miss_time

Where: miss_time = miss_penalty + time_to_detect_miss

In the SA cache, time_to_detect_miss is 1 cycle (i.e., the hit_time, because that’s when you check both
ways for a miss).

Name _________(answer key)________

Page 6 of 14

For the CA cache, perhaps the clearest equation is [Equation #1]:

AMAT = fast_hit_rate * fast_hit_time
 + slow_hit_rate * slow_hit_time
 + miss_rate * (miss_penalty + time_to_verify_miss)

A more common, but confusing way to think about this is [Equation #2]:

AMAT= fast_hit_time
 + slow_hit_rate*(slow_hit_time - fast_hit_time)
 + miss_rate*(miss_penalty+(slow_hit_time-3))

Note: It was stated that “slow_hit_time” is 4 cycles BUT that’s double-counting the fast_hit_time (i.e.,
double-counting the time to detect a miss in Way0). If the fast_hit_time was weighted 100%, then the
student needed to be careful to subtract the fast_hit_time from the slow_hit_time (i.e., slow_hit_penalty =
slow_hit_time - fast_hit_time).

Note#2: In the same vein, the student must also account for the fact that the miss_penalty doesn’t start until
after we’ve discovered the memory access is not a slow-hit, so pure misses must also add the additional
cycle spent checking Way1’s tag (basically one cycle to check Way0 for a miss, then another cycle to check
Way1 for a miss). Thus “time_to_verify_miss” = 2 cycles, meaning the “miss_time” = “miss_penalty + 2
cycles”.

Note#3: Again, Note#2 does not imply that you must add all of the slow_hit_time to the miss_time. You
only need to check Way0 and Way1 to verify the miss before you activate the memory request, and start the
miss_penalty countdown (however, full credit was given if you assumed you had to go through the entire
slow-hit process).

The following equation is wrong because it fails to account for the cycles spent checking for misses, which
must always occur first before you can start paying miss_penalty cycles on a memory request.

AMAT_ca=fast_hit_rate*fast_hit_time + slow_hit_rate*slow_hit_rate+miss_rate*miss_penalty

Most credit was given for this equation however, because it only short-changes the time spent servicing a
miss by a few nanoseconds (out of the >100ns).

So using Equation #1 we get, and filling in from previous questions:

AMAT_ca = (0.33)*(1 cycle)(1.11ns/cycle)+(0.5)(4 cycles *1.11ns/cycle) + (.1667)*(100ns
+2cycles*1.11ns/cycles) = 0.37ns+2.22ns+17.04ns = 19.63ns

Final note: the CA’s poor fast hit rate hurts AMAT performance (slightly), but the cpu can be clocked quite
a bit faster! (900MHz vs 650MHz)

SA cache: _18.21ns
CA cache: _19.63ns

Name _________(answer key)________

Page 7 of 14

Q1.F: Crossover Point in Performance (3 points)

The performance of the column-associative cache is highly dependent on the fast-hit rate.
What is the ratio of fast-hits to slow-hits for which the AMAT is the same for the two-
way set-associative and the column-associative caches?

This question is asking when is (AMAT_sa == AMAT_ca). From Q1.E, we get:

AMAT_sa = hit_rate*1.54ns + miss_rate*(1cycle+miss_penalty) =
AMAT_ca = fast_hit_rate*1.11ns+slow_hit_rate*(4*1.11ns) + miss_rate*(2cycles
+miss_penalty)

(both have the same miss_rates, and the actual miss_times only differ by about a
nanosecond out of 100ns), so for this problem we can ignore the miss_rate and
miss_times and focus on the hits. This leaves us with:

AMAT_sa = AMAT_ca =
hit_rate*1.54ns = fast_hit_rate*1.11ns + slow_hit_rate*4.44n

if fast_hit_rate=x, slow_hit_rate=y then:

(x+y)*1.54 = 1.11x + 4.44y

1.54x + 1.54y = 1.11x + 4.44y

0.43x = 2.90y

the problem is asking for the ratio of x/y (fast hits to slow hits), so if r=x/y then:

x/y = r = 2.90/0.43 = 6.74

so we need >6 times as many fast hits as slow hits.

This makes sense because we eat 4 cycles for a slow hit, so we’d want >4 one-cycle fast-
hits for every 4-cycle slow-hit.

Name _________(answer key)________

Page 8 of 14

Q1.G: Crossover Point in Energy (3 points)

Assume that the energy usage of the cache is dominated by the memory array access, in
which a single way access is 1 nJ (both read and writes operations take 1nJ). Hint: notice
that a column-associative cache does not look at Way1 unless it misses in Way0.

How much energy is used during the following scenarios? Explain what accesses are
occurring in each scenario.

A fast-hit for a column-associative cache?
1nJ (only read way0)

A hit for a two-way set-associative cache?
2nJ (must read both ways and both sets of tags to see which has the data)

A slow-hit for a column-associative cache?
6 nJ
(cycle1: read way0, verify miss - 1nJ
cycle2: read out both ways to the swap registers and check way1’s tags - 2nJ
cycle3: write to both ways to finish swap -2nJ
cycle4: read out way0’s data - 1nJ)

Q1.H: Crossover Point in Energy (3 points)
What is the ratio of fast-hits to slow-hits for a column-associative cache for it to be more
energy efficient than a two-way set-associative cache?
For this problem, we’re only consider energy used during the memory array accesses.
Therefore, we can ignore the miss scenario because it happens sufficiently rare that it
won’t be more than a 2nd order effect on the energy, with regards to accessing the
memory arrays within the cache.

So with this assumption made of only considering accesses hits in the cache we get the
following equation (using Q1.G):

SA_energy = CA_energy
hit_rate*(2nJ) = fast_hit_rate*(1nJ) + slow_hit_rate*(6nJ)

if x = fat_hit_rate, y = slow_hit_rate....
(x+y)2 = x + y6
2x+2y = x + 6y
x = 4y

x/y = 4, or 4 fast hits + one slow hit == 5 SA hits

Name _________(answer key)________

Page 9 of 14

Q1.I: Aliasing (3 points)
Assuming that the page size is 4KB for this machine, and the cache parameters from
Table 1 still hold, and the cache is physically-tagged, virtually-indexed, does the column-
associative cache run in to problems with aliasing? Explain your answer.

Aliasing is not a problem. index_sz+offset_sz=page_offset_sz, this behaves like a regular
SA cache.

-2 points if said “yes” because aliases can fit into both ways. This is technically true, but
in practice can never occur. Consider VA1 and VA2, which both alias to PA. VA1
accesses the cache and brings PA, with physical tag Pt, into Way0. VA2 then accesses the
cache. It maps to the same set as VA1 (because index_sz+offset_sz <= page_offset_sz). It
also maps to the same tag (Pt). Therefore, VA2 hits in the cache and returns the data
pointed to by PA. Thus there are no problems because the second alias will never be
brought into the cache and written to an other way - it will simply use the first alias’s
copy.

Name _________(answer key)________

Page 10 of 14

Question 2: Three C’s of Cache Misses (24 points)

Name _________(answer key)________

Page 11 of 14

Compulsory Misses Conflict Misses Capacity Misses

Changing from two-way
set-associative to
column associative

(See Question 1 of this
Quiz for details)

no change

nothing changes because they
look identical. only change is
slow-hit/fast-hit semantics

no change

(same reason)

-1 for increase. while the
number of conflict cache
misses stays constant, there is
an increase in average hit time
access due to less “fast” ways

no change

(same reason)

Add a sub-blocking
scheme (Divide block
into sub-blocks with a
valid bit for each sub-
block)

(line size constant)

increases

we now bring in less of the
block (sub-blocking saves you
on memory bandwidth, and this
mi s s_pena l t i e s , by on ly
bringing in a sub-block when
needed).

no change

associativity constant

no change

capacity constant

Double line size to 2n
bytes, by combining two
lines of size n bytes with
a valid bit for each block
(again, sub-blocking)

(capacity constant)

no change

because of sub-blocking, we
still bring in the same amount
of data to exploit for spatial
locality

increases

less sets so more addresses
will conflict with one another

no change

capacity constant

Adding prefetching

decreases

(it’s kind of the point of the
prefetcher)

increases

prefetch data could pollute the
cache

-1 for saying no change

increases

prefetch data could pollute
the cache.

-1 for saying no change

Question 3: TLB Performance (24 points)

END OF QUIZ

Name _________(answer key)________

Page 12 of 14

TLB contribution to the CPI TLB reach TLB capacity misses

Increase page size

decreases, because TLB can
hold translations for a greater
region of memory, so there
will be fewer misses across a
given program’s accesses

increases

each TLB entry maps to a
larger space

decreases, since TLB has
greater reach

-1 for saying “no change if
capacity viewed as # of
entries”.

Increase number of
TLB entries

decreases, because fewer TLB
misses (conflict and capacity)

increases

(pagesize*# of entires)

decreases

(TLB is now bigger and so
provides more capacity)

Increase the number of
levels in the virtual-
memory hierarchy

some ambiguity here,
intended to refer to
levels in page table
hierarchy, but correct
a n s w e r s g i v e n i f
a s s u m e d t h a t t h e
question asked about #
levels in the TLB
hierarchy

increases

(more levels in the page table to
walk over on each miss, which
translates directly to more memory
accesses required to compute the
path to the next level).

d e c r e a s e s b e c a u s e o f m o r e
“caching” provided by more TLB
levels

no change

increase if stated that outer levels
of the TLB provide more capacity

no change

it was okay to say “decreases if
the outer levels in the TLB
hierarchy captured the inner
level misses”

Increase virtual address
size from 32-bits to 64-
bits

This forces more levels
in the VM page table
hierarchy to be added

increases

(more levels in the page table
to walk over on each miss)

-1 for stating the # of levels in
the hierarchy would remain
unchanged

no change

unchanged, as page size and
of TLB entries remains
constant

no change

unchanged, as page size
and # of TLB entries
remains constant

Appendix A. Direct-mapped Cache

The following diagram shows how a direct-mapped cache is organized. To read a word
from the cache, the input address is set by the processor. Then the index portion of the
address is decoded to access the proper row in the tag memory array and in the data
memory array. The selected tag is compared to the tag portion of the input address to
determine if the access is a hit or not. At the same time, the corresponding cache block is
read and the proper line is selected through a MUX.

Figure A-1: A direct-mapped cache implementation

In the tag and data array, each row corresponds to a line in the cache. For example, a row
in the tag memory array contains one tag and two status bits (valid and dirty) for the
cache line. For direct-mapped caches, a row in the data array holds one cache line.

Name _________(answer key)________

Page 13 of 14

Appendix B. Two-way Set-associative Cache

The implementation of a 2-way set-associative cache is shown in the following diagram.
(An n-way set-associative cache can be implemented in a similar manner.) The index
part of the input address is used to find the proper row in the data memory array and the
tag memory array. In this case, however, each row (set) corresponds to two cache lines
(two ways). A row in the data memory holds two cache lines (for 32-bytes cache lines, 64
bytes), and a row in the tag memory array contains two tags and status bits for those tags
(2 bits per cache line). The tag memory and the data memory are accessed in parallel, but
the output data driver is enabled only if there is a cache hit.

Tag Index 0 0

MUX

Data
Decoder

Tag
Decoder

=

S TT S 2x2b-2 data words

MUX=

Valid
Output Driver

Buffer Driver

Valid Bit

Comparator

Data
Output Drivers

2b: cache line size (bytes)
Input Address

Figure B-1: A 2-way set-associative cache implementation

Name _________(answer key)________

Page 14 of 14

