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Question 1: Column-Associative Caches 
(30 points)
In this problem we analyze two different proposals for a cache to be used in a high-
performance processor.  We care about both the cycle time (which is limited by the cache 
hit access time) and the miss rate.

The first proposal is for a two-way set-associative cache (see Appendix B).  The second 
design comes from Agarwal and Pudar, who proposed a column-associative cache in 
1993. They recognized the main advantage of direct-mapped caches is their fast hit time, 
but their main disadvantage is the large number of conflict misses.  A set-associative 
cache can improve the miss rates over the direct-mapped cache, but its hit time is worse 
because the expensive tag checks are placed on the critical path.

The column-associative cache aims to achieve the hit time of a direct-mapped cache, but 
with the lower miss rate of a two-way set-associative cache.  The design of this cache is 
shown below in Figure 2.  It’s probably best to think of it as a two-way cache, but that 
data is always read out of Way0. 

If the memory access is a hit in Way0, then the processor continues as normal (a “fast 
hit”).  If it misses in Way0, then Way1 is checked for the memory line. If there is a hit in 
Way1, then the data from Way1 is returned to the processor (the “slow hit”) and the 
cache lines in Way0 and Way1 are swapped (so that the next access to the line will be a 
fast hit in Way0).  If both ways miss, Way1 is evicted, Way0’s cache line is moved to 
Way1, and the accessed memory is allocated to Way0.  In short, the most-recently-used 
line is always moved to Way0.

Figure 1. Column-Associative Cache Behavior
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Name _________(answer key)________
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A “fast hit” returns data in a single cycle (hit time = 1 cycle).   A “slow hit” takes 4 
cycles: 
 1st cycle - detect miss in Way0
 2nd cycle - check Way1’s tag, write Way0 and Way1 to the swap registers
 3rd cycle - swap ways (on tag hit for Way1)
 4th cycle - read out the data (now located in Way0)
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Figure 2. Column-Associative Cache Datapath

Q1.A: Cache parameters (2 points)
Fill out the following table of cache parameters.  The address size is 32 bits, the index 
size is 8 bits, and the block offset size is 4 bits (note: these parameters will hold for the 
rest of Question 1).

2-way set-associative column-associative
tag size (bits) 20 bits 20 bits

line size (bytes) 2^(blk_offset_sz) = 16 bytes 16 bytes

number of sets 2^(index_sz) = 256 sets 256 sets

cache capacity (KB) 256*16*2=8192 bytes (8KB) 256*16*2=8192 bytes (8KB)

Table 1. Cache Parameters

Name _________(answer key)________
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Q1.B: Critical Paths (8 points) 

Using Figure 1, Figure B-1 (found in Appendix B), Table 1, and Table 2, determine and 
explain what the critical path is for both the two-way set-associative cache (SA) and the 
column-associative cache (CA).  Also, determine the cache access time (ps) for both 
configurations (i.e., the delay through the critical path). 

Component Delay equation (ps) 2-way set 
associative

column-
associative

Decoder 20×(# of index bits) + 60 Tag 220 220Decoder 20×(# of index bits) + 60
Data 220 220

Memory array 20×log2 (# of rows) + 
20×⎣log2 (# of bits in a row)⎦+100

Tag 360   340*Memory array 20×log2 (# of rows) + 
20×⎣log2 (# of bits in a row)⎦+100 Data 420   400*

Comparator 20×(# of tag bits) + 50 Tag 450 450
2-input AND 40 40 40
2-input OR 100 100 100
N-to-1 MUX 50×log2 N + 200 300 300
Buffer driver 190 190 190
Data output driver 90×(associativity) + 100 280 190
Valid output driver 50 50 50

Table 2. Delay of each cache component

*Note: For the column-associative cache, you only need to consider the fast-hit scenario. 
In this case, only Way0 needs to be accessed, allowing it to have a faster memory array 
access time. You can also ignore the tag check path in the column-associative cache. We 
promise it’s not on the critical path.

SA Critical Path: 
tag decoder->tag array->comparator->AND->buffer driver->data output driver  
= 220+360+450+40+190+280= 1540ps

CA Critical Path: 
decoder->memory array (only way0)-> mux->data output driver  
= 220+400+300+190=1110ps

SA Access Time : 1540 ps
CA Access Time : 1110 ps

Name _________(answer key)________
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The following questions evaluate the cache performance of the following C code, which 
performs an in-place vector-vector add.  A vector A and a vector B are added together. 
The result is this written back to vector A. Pseudo-disassembly of the inner loop is shown 
on the right.

#define N 4096
int A[N], B[N];
int i;

for(i = 0; i < N; i++)
  A[i] = A[i] + B[i];

Assume A and B are cache aligned to a 4KB boundary and are contiguous in memory.  
ints are 32 bits (4 bytes).

Also assume that the caches will use the parameters found in Table 1: Cache Parameters. 

Q1.C: Miss-rates? (2 points)

What is the miss-rate for the two-way set-associative (using LRU) and column-
associative caches running the above code? (percentage of memory accesses that 
completely miss in the cache and require fetching the data from main memory?).  

By the stated definition of miss-rate, both the SA and CA caches will look identical. 

cache line size found in Q1.A = 16 bytes, or 4 elements.

This is a unit-stride walk through memory, so the first access to each array will be a 
compulsory miss, but spatial locality will allow us to hit on the next 3 elements.  

Each inner loop is 3 accesses, and when i%4==0 that’s two misses, but the next 3*3+1 
accesses will hit (i.e., the next 3 iterations, plus the store to A in the first iteration).  

So miss_rate = 2 misses / 12 accesses = 16.67%.

(both A[i] and B[i] will map to the same index, but because it’s two-way, they won’t kick 
each other out).

SA cache: _16.67%

CA cache: _16.67%

Name _________(answer key)________
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# rA holds the addr to A[i]
# rB holds the addr to B[i]
LD  r2,0(rB)
LD  r1,0(rA)
ADD r1,r1,r2
ST  r1,0(rA)



Q1.D: Hit-rates? (2 points)
What is the hit-rate running the above code for the two-way set-associative (using LRU) 
and the column-associative cache?
For the SA cache: hit-rate = (100% - miss_rate), so 83.33%.

For the CA cache:

Both A[i] and B[i] will map to the same index, but because it’s two-way, they won’t kick 
each other out.  However, if B[i] is in Way0, an access to A[i] will kick B[i] to Way1 (and 
vice versa). 

For every 12 accesses (4 loop iterations, 3 inner accesses per loop), first iteration is 2 
cache misses, 1 fast hit.  the next three iterations will all slow hit the loads, and fast hit 
the store.
so fast_hit = 4/12 = 33.33%
and slow_hit = 6/12 = 50.%

-1 for people who said 2/3 slow hits, 1/3 fast hits, and didn’t factor in the first iteration.

                        SA cache:__83.33%
CA cache:__33.33%  (fast hit rate)

__50.00% (slow hit rate)

Q1.E: AMAT (4 points)
What is the Average Memory Access Time from running the above code for the two-way 
set-associative and the column-associative cache? Assume the miss penalty is 100 ns.  
Also assume that the processor’s clock speed is limited by the cache access time, which 
was computed in Q1.B.

For the SA cache:
AMAT_sa = hit_time + miss_rate*miss_penalty
AMAT_sa = 1 cycle (1.54ns/cyc) + (.1667)*100ns = 1.54ns+16.67ns = 18.21ns

Note that the fast_hit_time is always paid for, because you always have to eat a cycle to detect if a miss 
occurred before you can initiate the miss sequence. 

An other way to think of this is:

AMAT_sa = hit_rate*hit_time + miss_rate*miss_time

Where: miss_time = miss_penalty + time_to_detect_miss

In the SA cache, time_to_detect_miss is 1 cycle (i.e., the hit_time, because that’s when you check both 
ways for a miss).

Name _________(answer key)________
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For the CA cache, perhaps the clearest equation is [Equation #1]:

AMAT =    fast_hit_rate * fast_hit_time 
 + slow_hit_rate * slow_hit_time
 + miss_rate * (miss_penalty + time_to_verify_miss)

A more common, but confusing way to think about this is [Equation #2]:

AMAT=   fast_hit_time 
 + slow_hit_rate*(slow_hit_time - fast_hit_time)
 + miss_rate*(miss_penalty+(slow_hit_time-3))

Note: It was stated that “slow_hit_time” is 4 cycles BUT that’s double-counting the fast_hit_time (i.e., 
double-counting the time to detect a miss in Way0).  If the fast_hit_time was weighted 100%, then the 
student needed to be careful to subtract the fast_hit_time from the slow_hit_time (i.e., slow_hit_penalty = 
slow_hit_time - fast_hit_time). 

Note#2: In the same vein, the student must also account for the fact that the miss_penalty doesn’t start until 
after we’ve discovered the memory access is not a slow-hit, so pure misses must also add the additional 
cycle spent checking Way1’s tag (basically one cycle to check Way0 for a miss, then another cycle to check 
Way1 for a miss).  Thus “time_to_verify_miss” = 2 cycles, meaning the “miss_time” = “miss_penalty + 2 
cycles”. 

Note#3: Again, Note#2 does not imply that you must add all of the slow_hit_time to the miss_time. You 
only need to check Way0 and Way1 to verify the miss before you activate the memory request, and start the 
miss_penalty countdown (however, full credit was given if you assumed you had to go through the entire 
slow-hit process).

The following equation is wrong because it fails to account for the cycles spent checking for misses, which 
must always occur first before you can start paying miss_penalty cycles on a memory request.

AMAT_ca=fast_hit_rate*fast_hit_time + slow_hit_rate*slow_hit_rate+miss_rate*miss_penalty

Most credit was given for this equation however, because it only short-changes the time spent servicing a 
miss by a few nanoseconds (out of the >100ns).

So using Equation #1 we get, and filling in from previous questions:

AMAT_ca = (0.33)*(1 cycle)(1.11ns/cycle)+(0.5)(4 cycles *1.11ns/cycle) + (.1667)*(100ns
+2cycles*1.11ns/cycles) = 0.37ns+2.22ns+17.04ns = 19.63ns

Final note: the CA’s poor fast hit rate hurts AMAT performance (slightly), but the cpu can be clocked quite 
a bit faster! (900MHz vs 650MHz)

SA cache: _18.21ns
CA cache: _19.63ns

Name _________(answer key)________
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Q1.F: Crossover Point in Performance (3 points)

The performance of the column-associative cache is highly dependent on the fast-hit rate.  
What is the ratio of fast-hits to slow-hits for which the AMAT is the same for the two-
way set-associative and the column-associative caches?

This question is asking when is (AMAT_sa == AMAT_ca).  From Q1.E, we get:

AMAT_sa = hit_rate*1.54ns + miss_rate*(1cycle+miss_penalty) = 
AMAT_ca  = fast_hit_rate*1.11ns+slow_hit_rate*(4*1.11ns) + miss_rate*(2cycles
+miss_penalty)

(both have the same miss_rates, and the actual miss_times only differ by about a 
nanosecond out of 100ns), so for this problem we can ignore the miss_rate and 
miss_times and focus on the hits. This leaves us with:

AMAT_sa = AMAT_ca = 
hit_rate*1.54ns = fast_hit_rate*1.11ns + slow_hit_rate*4.44n

if fast_hit_rate=x, slow_hit_rate=y then:

(x+y)*1.54 = 1.11x + 4.44y    

1.54x + 1.54y = 1.11x + 4.44y

0.43x = 2.90y

the problem is asking for the ratio of x/y (fast hits to slow hits), so if r=x/y then:

x/y = r = 2.90/0.43 = 6.74

so we need >6 times as many fast hits as slow hits.

This makes sense because we eat 4 cycles for a slow hit, so we’d want >4 one-cycle fast-
hits for every 4-cycle slow-hit.

Name _________(answer key)________
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Q1.G: Crossover Point in Energy (3 points)

Assume that the energy usage of the cache is dominated by the memory array access, in 
which a single way access is 1 nJ  (both read and writes operations take 1nJ). Hint: notice 
that a column-associative cache does not look at Way1 unless it misses in Way0.

How much energy is used during the following scenarios? Explain what accesses are 
occurring in each scenario.

A fast-hit for a column-associative cache?
1nJ (only read way0)

A hit for a two-way set-associative cache?
2nJ (must read both ways and both sets of tags to see which has the data)

A slow-hit for a column-associative cache?
6 nJ 
(cycle1: read way0, verify miss - 1nJ
cycle2: read out both ways to the swap registers and check way1’s tags - 2nJ
cycle3: write to both ways to finish swap -2nJ
cycle4: read out way0’s data - 1nJ)

Q1.H: Crossover Point in Energy (3 points)
What is the ratio of fast-hits to slow-hits for a column-associative cache for it to be more 
energy efficient than a two-way set-associative cache?
For this problem, we’re only consider energy used during the memory array accesses.  
Therefore, we can ignore the miss scenario because it happens sufficiently rare that it 
won’t be more than a 2nd order effect on the energy, with regards to accessing the 
memory arrays within the cache.

So with this assumption made of only considering accesses hits in the cache we get the 
following equation (using Q1.G):

SA_energy = CA_energy
hit_rate*(2nJ) = fast_hit_rate*(1nJ) + slow_hit_rate*(6nJ)

if x = fat_hit_rate, y = slow_hit_rate....
(x+y)2 = x + y6
2x+2y = x + 6y
x = 4y

x/y = 4, or .... 4 fast hits + one slow hit == 5 SA hits

Name _________(answer key)________
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Q1.I: Aliasing (3 points)
Assuming that the page size is 4KB for this machine, and the cache parameters from 
Table 1 still hold, and the cache is physically-tagged, virtually-indexed, does the column-
associative cache run in to problems with aliasing? Explain your answer.

Aliasing is not a problem. index_sz+offset_sz=page_offset_sz, this behaves like a regular 
SA cache.

-2 points if said “yes” because aliases can fit into both ways. This is technically true, but 
in practice can never occur.  Consider VA1 and VA2, which both alias to PA.  VA1 
accesses the cache and brings PA, with physical tag Pt, into Way0.  VA2 then accesses the 
cache. It maps to the same set as VA1 (because index_sz+offset_sz <= page_offset_sz). It 
also maps to the same tag (Pt). Therefore, VA2 hits in the cache and returns the data 
pointed to by PA.  Thus there are no problems because the second alias will never be 
brought into the cache and written to an other way - it will simply use the first alias’s 
copy.

Name _________(answer key)________
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Question 2: Three C’s of Cache Misses (24 points)

Name _________(answer key)________
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Compulsory Misses Conflict Misses Capacity Misses

Changing from two-way 
set-associative to 
column associative 

(See Question 1 of this 
Quiz for details)

no change

nothing changes because they 
look identical. only  change is 
slow-hit/fast-hit semantics

no change

(same reason)

-1 for increase. while the 
number of conflict cache 
misses stays constant, there is 
an increase in average hit time 
access due to less “fast” ways

no change

(same reason)

Add a sub-blocking 
scheme (Divide block 
into sub-blocks with a 
valid bit for each sub-
block)

(line size constant)

increases

we now bring in less of the 
block (sub-blocking saves you 
on memory bandwidth, and this 
mi s s_pena l t i e s , by on ly 
bringing in a sub-block when 
needed).

no change

associativity constant

no change 

capacity constant

Double line size to 2n 
bytes, by combining two 
lines of size n bytes with 
a valid bit for each block 
(again, sub-blocking)

(capacity constant)

no change

because of sub-blocking, we 
still bring in the same amount 
of data to exploit for spatial 
locality

increases

less sets so more addresses 
will conflict with one another

no change

capacity constant

Adding prefetching

decreases

(it’s kind of the point of the 
prefetcher)

increases

prefetch data could pollute the 
cache

-1 for saying no change 

increases

prefetch data could pollute 
the cache.

-1 for saying no change



Question 3: TLB Performance  (24 points)

END OF QUIZ 

Name _________(answer key)________
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TLB contribution to the CPI TLB reach TLB capacity misses

Increase page size

decreases, because TLB can 
hold translations for a greater 
region of memory, so there 
will be fewer misses across a 
given program’s accesses

increases

each TLB entry maps to a 
larger space

decreases, since TLB has 
greater reach

-1 for saying “no change if 
capacity viewed as # of 
entries”. 

Increase number of 
TLB entries

decreases, because fewer TLB 
misses (conflict and capacity)

increases

(pagesize*# of entires)

decreases

(TLB is now bigger and so 
provides more capacity)

Increase the number of 
levels in the virtual-
memory hierarchy

------------------------

some ambiguity here, 
intended to refer to 
levels in page table 
hierarchy, but correct 
a n s w e r s g i v e n i f 
a s s u m e d t h a t t h e 
question asked about # 
levels in the TLB 
hierarchy

increases 

(more levels in the page table to 
walk over on each miss, which 
translates directly to more memory 
accesses required to compute the 
path to the next level).

------------------------

d e c r e a s e s b e c a u s e o f m o r e 
“caching” provided by more TLB 
levels

no change

------------------------

increase if stated that outer levels 
of the TLB provide more capacity

no change

------------------------

it was okay to say “decreases if 
the outer levels in the TLB 
hierarchy captured the inner 
level misses”

Increase virtual address 
size from 32-bits to 64-
bits

This forces more levels 
in the VM page table 
hierarchy to be added

increases

(more levels in the page table 
to walk over on each miss)

-1 for stating the # of levels in 
the hierarchy would remain 
unchanged 

no change

unchanged, as page size and 
# of TLB entries remains 
constant

no change

unchanged, as page size 
and # of TLB entries 
remains constant



Appendix A. Direct-mapped Cache

The following diagram shows how a direct-mapped cache is organized. To read a word 
from the cache, the input address is set by the processor. Then the index portion of the 
address is decoded to access the proper row in the tag memory array and in the data 
memory array. The selected tag is compared to the tag portion of the input address to 
determine if the access is a hit or not. At the same time, the corresponding cache block is 
read and the proper line is selected through a MUX. 

Figure A-1:  A direct-mapped cache implementation

In the tag and data array, each row corresponds to a line in the cache. For example, a row 
in the tag memory array contains one tag and two status bits (valid and dirty) for the 
cache line. For direct-mapped caches, a row in the data array holds one cache line. 

Name _________(answer key)________
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Appendix B. Two-way Set-associative Cache

The implementation of a 2-way set-associative cache is shown in the following diagram. 
(An n-way set-associative cache can be implemented in a similar manner.)  The index 
part of the input address is used to find the proper row in the data memory array and the 
tag memory array. In this case, however, each row (set) corresponds to two cache lines 
(two ways). A row in the data memory holds two cache lines (for 32-bytes cache lines, 64 
bytes), and a row in the tag memory array contains two tags and status bits for those tags 
(2 bits per cache line).  The tag memory and the data memory are accessed in parallel, but 
the output data driver is enabled only if there is a cache hit. 

Tag Index 0 0

MUX

Data
Decoder

Tag
Decoder

=

S TT S 2x2b-2 data words

MUX=

Valid 
Output Driver

Buffer Driver

Valid Bit

Comparator

Data 
Output Drivers

2b: cache line size (bytes)
Input Address

Figure B-1:  A 2-way set-associative cache implementation

Name _________(answer key)________
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