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    Name:      <ANSWER KEY>      

This is a closed book, closed notes exam.
80 Minutes
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Notes:
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully.
• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not yet 

taken the quiz. If you have inadvertently been exposed to a quiz prior to taking 
it, you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without giving 
explanations if the instruction ask you to explain your choice.

 

Writing name on each sheet       ________       1 Points
Question 1 ________     17 Points
Question 2 ________     20 Points
Question 3 ________     12 Points
Question 4 ________     30 Points

TOTAL        ________  80 Points
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Question 1: Register Renaming
(17 points)
For this question we will analyze the scheduling of the following code on an out-of-order 
processor. 

Written in C, the code is as follows:
#define N 1024
int S[N],A[N],B[N],Y[N];

for(int i = 0; i < N; i++)
  S[i] = A[i] * B[i] + Y[i];

The code compiles to the following:

I1:   addi $1, $0, 1024
I2:   addi $2, $0, 0
   loop:
I3:   ld   $3, A($2)
I4:   ld   $4, B($2)
I5:   mul  $3, $3, $4
I6:   ld   $4, Y($2)
I7:   add  $3, $3, $4
I8:   st   $3, S($2)
I9:   addi $2, $2,  4
I10:  addi $1, $1, -1
I11:  bnez $1, loop

A, B, Y, and S are immediates set by the compiler to point to the beginning of the A, B, Y, and S  
arrays.  Register $1 holds the loop’s counter (which counts down from 1024 to zero), register $2 
is used to index the arrays, and registers $3 and $4 hold temporary variables as needed. For this 
ISA, register $0 is read-only and always returns the value zero.

The processor uses a split instruction window/ROB design, with a unified physical register file 
(similar to the MIPS R10k). A diagram of the processor is shown in Figure 1 below.

Name _________(answer key)________
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Figure 1. Out-of-order Pipeline with split instruction window and ROB.

All instructions have an effective latency of 3 cycles (dependent instructions can issue 3 cycles 
after the instruction producing the value issues). 

Unfortunately, the ISA being used only has 4 architectural registers - $1,$2,$3, and $4 
(remember register $0 is always zero, is read-only, and is not renamed).  Also, there are only 8 
physical registers (named P1,P2,P3 … through P8).

Q1.A: (9 points) 

Complete the following table found on the next page. For each instruction, label the following:
  • which physical register gets assigned to the instruction as a destination. 
  • upon commit, which physical register gets added back to the free list.

The initial state begins with four registers on the free list, in the order of (P1,P2,P3, and P4).  The 
initial state of the retirement rename map table is:

Architectural 
Register

Physical 
Register

$1 P6

$2 P5

$3 P8

$4 P7

You can assume that there are no instructions in-flight in the beginning.

Name _________(answer key)________
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Complete the following table.  This table only covers the first iteration through the loop. The first 
two instructions have been filled out for you.

ISA Dest. Reg/Instruction Physical Dest. Register Freed Register

($1)      I1 P1 P6
($2)      I2 P2 P5
($3)      I3 P3 P8
($4)      I4 P4 P7
($3)      I5 P6 P3
($4)      I6 P5 P4
($3)      I7 P8 P6
(none)    I8 n/a n/a
($2)      I9 P7 P2
($1)     I10 P3 P1
(none)   I11 n/a n/a

(9 points for 18 entries, so -1/2 for each wrong entry for wrong answers)

Store instructions and branches do not have a destination register.

Registers are freed in program order, so we do not need to know when an instruction is issued or 
when it writes back.  Therefore, P3 is used for I10, not P4.

Name _________(answer key)________
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Q1.B: Pipeline Stages (8 points) 

Circle the correct answer for the following questions.

For some of these questions, multiple answers were generally given full credit if the pipeline 
could still exhibit correct behavior.  Half credit was given if the answer would provide correct 
execution, but was very sub-optimal in performance.

Which stage allocates entries in the ROB?

fetch   decode   regrename   dispatch   issue   execution  commit

Any part of the early in-order pipeline could correctly allocate an entry in the ROB (entries must 
maintain program order so that instructions are committed in order).

At which stage is an entry in the ROB deallocated?

fetch   decode   regrename   dispatch   issue   execution  commit

The only correct answer is commit, as the entire purpose of the ROB is to track all in-flight 
instructions until commit, when it is known the instruction actually executed and will not have to 
be re-executed or scrapped due to misspeculation. 

At which stage is an instruction allocated an entry in the instruction window?

fetch   decode   regrename   dispatch   issue   execution  commit

Same answer as allocating ROB entries. 

At which stage is an instruction entry in the instruction window deallocated?

fetch   decode   regrename   dispatch   issue   execution  commit

Because issue entries are very expensive, we want to deallocate issue slots as soon as possible, 
which is when the instruction is issued (this is an advantage to the split inst window/ROB 
design). However, some pipelines will issue instructions speculatively (e.g., ALU op that is 
dependent on a speculative load). If a misspeculation occurs, the speculated instruction will have 
to be re-issued.

Commit is considered incorrect, because otherwise you don’t have an instruction window, you 
have an ROB. 

Name _________(answer key)________
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At which stage is a store entry allocated in the LD/ST queue?

fetch   decode   regrename   dispatch   issue   execution  commit

Entries in the LD/ST queue must be in program order to insure the dependency checks between 
loads and stores are analyzed correctly. 

At which stage is a load entry allocated in the LD/ST queue?

fetch   decode   regrename   dispatch   issue   execution  commit

Entries in the LD/ST queue must be in program order to insure the dependency checks between 
loads and stores are analyzed correctly. 

When is a store performed (i.e., sent to the memory)?

fetch   decode   regrename   dispatch   issue   execution  commit

Stores change the architectural state, and thus cannot be sent to memory until the processor 
knows the store will actually be performed. Thus it must wait until commit time (any earlier and 
it would be speculating that the branch path was correct and no earlier exceptions would occur, 
etc.).

When is a load performed (i.e., when is data returned that can be used by other dependent 
instructions)?

fetch   decode   regrename   dispatch   issue   execution  commit

(-1/2) for commit (very sub-optimal to force loads to be performed in-order at commit time, as 
one of the biggest advantages of OoO pipelines is allowing loads to run ahead).

Loads do not affect the architectural state, so we can speculate that they are performed before 
knowing the branch path is correct, no previous exceptions occurred, the load doesn’t conflict 
with earlier stores, etc. Thus we can request from memory the load data and speculatively bypass 
to other dependent instructions in the Execute stage.  Naturally, a lot of undoing may have to 
occur if a misspeculation occurs, but high performance mandates that loads occur in the Execute 
stage.

Name _________(answer key)________
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Question 2: Scheduling for Out-of-order Processors
(20 points)
The following questions concerns the scheduling of floating-point code on out-of-order 
processors. For this problem, we will deal with a single-issue out-of-order processor that uses a 
split instruction window/ROB design, as shown in Figure 2.

Figure 2. Out-of-order Pipeline with split instruction window and ROB.

The processor contains the following stages:
• Fetch (F), Decode/Rename (D), Issue (I), Regfile Read (R), Execute(X1,X2,...), and 

Regfile Writeback (W)
• The Execute stage takes a variable number of cycles, depending on the instruction: 

- one cycle for ALU operations (denoted as X1) 
- three cycles for memory operations (X1,X2,X3, which includes the time in the 

ALU)
- four cycles for floating-point multiply instructions (X1,X2,X3,X4)  
- two cycles for floating-point add instructions (X1,X2)

You can assume that:
• All functional units are fully pipelined.
• There is no register renaming (not until Q2.B).
• There are two register domains: a set for integer registers (R1,R2,...) and a set for floating-

point registers (F1, F2, ....).
• The fetch stage performs perfect branch prediction, and the fetch buffer can hold an 

infinite number of instructions.
• The issue stage is a buffer of unlimited length that holds instructions waiting to begin 

execution (aka, the instruction window).
• An instruction will only exit the issue stage if it does not cause a WAR or WAW hazard (in 

this design, all data is obtained by reading from the register file on instruction issue, so 
newer instructions must wait on older instructions to read the register file before issuing 
and thus potentially overwriting the older instructions’ sources!).

Fetch Buffer Issue
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Instruction 
Window

Regfile
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ALU
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Fmul

Mem

Execute

Regfile
Writeback

Name _________(answer key)________
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assumptions, continued:
• Only one instruction can be issued at a time, and if multiple instructions are ready, the 

oldest will go first.
• An infinite number of instructions may write back to the register file simultaneously.
• The register file bypasses write values to the read ports.
• There is no bypassing between functional units. All operand data is read from the register 

file.
• Store data is not needed until after the address calculation and can be bypassed from the 

register file directly to the end of the (X2) stage.

For this problem we will be describing the scheduling of the following code:

I1:  ld.d  F1,  A(R1)
I2:  ld.d  F2,  B(R1)
I3:  mul.d F3,  F1, F2
I4:  ld.d  F2,  Y(R1)
I5:  add.d F5,  F3, F2
I6:  st.d  F5,  S(R1)
I7:  addi  R1,  R1, 8

A, B, Y, and S are immediates set by the compiler to point to the beginning of the A, B, Y, and S  
arrays.  Instructions postfixed (*.d) denote instructions that affect double-precision floating point 
numbers. 

Q2.A: Without Register Renaming (10 points) 

Complete Table 1 (found on the following page), indicating which stage each instruction is in for 
each cycle. There is no register renaming available for this question (the decode stage still 
performs work though). Assume all register values are available at the start of the execution of 
the code. The first two rows have been completed for you.  

Q2.B: With Register Renaming (8 points) 

Register renaming will take care of some of the hazards that arise in Q2.A. 

Given unlimited renaming resources, complete the Table 2 (found on the following page), 
indicating which stage each instruction is in for each cycle.  The first two rows have been 
completed for you. 

Name _________(answer key)________
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The code again:

I1:  ld.d  F1,  A(R1)
I2:  ld.d  F2,  B(R1)
I3:  mul.d F3,  F1, F2
I4:  ld.d  F2,  Y(R1)
I5:  add.d F5,  F3, F2
I6:  st.d  F5,  S(R1)
I7:  addi  R1,  R1, 8  

 Cycle
Inst

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

I1 F D I R X1 X2 X3 W
I2 F D I R X1 X2 X3 W
I3 F D I I I I R X1 X2 X3 X4 W
I4 F D I I I I R X1 X2 X3 W
I5 F D I I I I I I I R X1 X2 W
I6 F D I I I I I I I R X1 X2 X3 W
I7 F D I I I I I I I R X1 W

Table 1: Question 2.A (No register renaming)

 Cycle
Inst

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

I1 F D I R X1 X2 X3 W
I2 F D I R X1 X2 X3 W
I3 F D I I I I R X1 X2 X3 X4 W
I4 F D I R X1 X2 X3 W
I5 F D I I I I I I I R X1 X2 W
I6 F D I I I I I I I R X1 X2 X3 W
I7 F D I R X1 W

Table 2: Question 2.B (With register renaming)

While in this case register renaming may not appear to be a win because I6 still doesn’t finish 
any faster, register renaming will allow further iterations of the loop to be performed earlier 
because register renaming breaks the anti-dependencies between loop iterations. 

Name _________(answer key)________
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Q2.C: Increasing the width of an OOO processor 
(2 points) 

While you are simulating a new design for the next-generation Intel processor (an aggressively 
speculating out-of-order superscalar processor), you notice that increasing the width of your 
design too far causes the cycles / instruction to actually increase (note: you are fully simulating 
the L1 instruction and data caches, as well as simulating all speculation mechanisms).  What 
reason can you supply to your superiors as to why a wider processor actually hurts the cycles / 
instruction metric? 

A wider processor allows more instructions to be inflight before a misspeculation is discovered. 
The speculated instructions could end up polluting the caches or could be using up memory 
bandwidth that will hurt overall performance.

Some answered that the number of cycles spent rolling back would increase. While the number 
of instructions you kill will increase, the cycles to roll back will be the same (the width 
increased, so you can roll back more instructions per cycle).

Other students answered “a lot more instructions are inflight and have to be killed”. while true, 
you fetch more instructions so it will be a wash with killing more instructions.

Name _________(answer key)________
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Question 3: Branch Prediction
(12 points)
For this problem, we are interested in the following snippet of code:

int array[N] = {....};

for(int i = 0; i < N; i++)
  if (array[i] != 0) 
    array[i] = array[i] + 1;

Using the disassembler we get:

   addi $n, $0, N 
   addi $i, $0, 0
loop:
   ld   $a, array($i)
   beqz $a, endif
   addi $a, $a, 1
   st   $a, array($i)
endif:
   addi $i, $i,  4
   addi $n, $n, -1
   bnez $n, loop

(where N is some integer used to specify the size of array). 

Q3.A: Limited Machine Resources(2 points) 

For this piece of code, would it be better to spend hardware resources on branch prediction or 
register renaming? Why?

Branch prediction.  Especially for this code, there are too many dependencies between 
instructions to allow for register renaming to provide a benefit, and without branch prediction we 
can not speculate past branches anyways to allow for register renaming to break the anti-
dependencies between iterations.

Name _________(answer key)________
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Q3.B: Prediction Accuracy (4 points) 

The processor that this code runs on uses a 512-entry branch history table (BHT), indexed by PC
[10:2]. Each entry in the BHT contains a 2-bit counter, initialized to the 00 state.

Each 2-bit counter works as follows: the state of the 2-bit counter decides whether the branch is 
predicted taken or not taken, as shown in Table 3.  If the branch is actually taken, the counter is 
incremented (e.g., state 00 becomes state 01). If the branch is not taken, the counter is 
decremented.  The counter saturates at 00 and 11 (a not-taken branch while in the 00 state keeps 
the 2-bit counter in the 00 state). 

State Prediction

00 not taken

01 not taken

10 taken

11 taken

Table 3. 2-bit counter state table.

If array = {0,1,-3,4,1}, what is the prediction accuracy for the two branches found in the above 
code for five iterations of the loop, using the 512-entry BHT described above?

With a 512-entry BHT, both branches will safely index different entries in the BHT.

5 iterations

The for loop will be {T,T,T,T,N} (taken, not-taken). 
However, the 2-bit counter will predict {N,N,T,T,T} as it takes two cycles to learn the branch is 
taken.  So the predictor is only accurate on 2 out of the 5 predictions.

The if branch will be {T,N,N,N,N}. The 2-bit counter will predict {N,N,N,N,N}. So it is accurate 
4 out of 5 times.

-1 point for missing the last iteration that exits the for loop.

BEQZ    (if)  __(4/5) = 80%__
BNEZ (for loop)  __(2/5) = 40%__

Name _________(answer key)________
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Q3.C: Prediction Accuracy - Small BHTs (2 points) 
If array = {0,1,-3,4,1}, what is the prediction accuracy for the two branches found in the above 
code for five loop iterations, using a ONE-entry BHT (i.e., all branches map to the same two-bit 
entry).
With a one-entry BHT, both branches will alias to the same entry in the BHT.

The for loop will be {T,T,T,T,N}. 
The if branch will be {T,N,N,N,N}.

Here’s a table tracking the 2-bit predictor state (“00->01” means that the 2bc started in the 00 
state, branch was taken, so it ended up in the 01 state):

0 1 -3 4 1
if 00 -> 01 10->01 10->01 10->01 10->01
for 01->10 01->10 01->10 01->10 01->00

And here’s a table tabulating when the predictor was correct:
0 1 -3 4 1

if X X X X X
for X X X X √

We can see that the if branch was 0 for 5, and the for loop branch was 1 out of 5.
-(1/2) points for missing the last iteration of the for loop.

BEQZ    (if)  __(0/5) =   0%___
BNEZ (for loop)  __(1/5) = 20%___

Q3.D: Static Hints (2 points) 
For this question, assume that the compiler can specify statically which way the processor should 
predict the branch will go. If the processor sees a "branch-likely" hint from the compiler, it 
predicts the branch is taken and does NOT update the BHT with this branch (i.e., any branches 
the compiler can analyze do not pollute the BHT). 

Which branches, if any, can the compiler provides hints for, if the input array for the compiler's 
test runs varies widely (assume the compiler must be fairly confident in the accuracy of a branch 
to be predicted statically before it labels a branch)? 

Circle only one of the following answers and explain:

A. The BEQZ branch (if)

B. The BNEZ branch (for loop)

C. Both branches

D. Neither branch

Name _________(answer key)________
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The if branch is data dependent, and the test 
arrays are specified as being relatively random 
and thus hard to predict.

The for loop will always be taken except for the 
last iteration, which makes it easy to predict.



Q3.E: BTBs (2 points)

One of your coworkers suggests adding a BTB (branch target buffer).  The BTB can hold two-
entries (fully-associative), is indexed by the current PC, and allows the processor's fetch stage to 
immediately fetch along the target PC's path if the entry tagged by the current PC is found in the 
BTB.  

For this piece of code used in Question 3, and assuming the baseline is a processor with only one 
entry for a BHT, would it be more advantageous to follow your coworker’s advice and add a 
BTB, or would it be better to add static hints from the compiler?  Explain your reasoning.

Depending on your justifications, the answer could be either the BTB or the static hints.

BTB: The key is to identify that while the actual prediction rates of both would be about the same (especially 
regarding the for loop), the BTB can redirect the instruction stream much earlier (as it only relies on the current PC), 
and thus hide a lot of the branch latency. Meanwhile, the BHT/static hints must wait until branch address calculation 
and instruction decode, which can be many, many cycles later.  Thus, the BTB is a win.

-- or --

Static Hints: Some students recognized while both schemes have about the same prediction accuracy, the BTB takes 
up some area and may not be worth the area/power/timing costs, if that is what we are considering to be the more 
important metric.

-- or --

Static Hints: Depending upon the interpretation of the interaction of the BTB and BHT, one can make a case for 
using the one-entry BHT augmented with static hints.  The argument is as follows: the BTB can redirect 
immediately, and will accurately (and quickly) redirect the for loop branch.  However, the BHT has the power to 
overrule the BTB later in the pipeline, if it disagrees.  The BHT for this problem has only one entry, and because it is 
aliased by both the always-taken for loop and the unpredictable if branch, the BHT will provide unpredictable 
predictions.  If the BHT predicts “not-taken” for the for loop, it will undo all of the correct predictions from the 
BTB, which won’t be resolved until the Execute stage (if you assume the BHT is allowed to overrule the BTB). 

A real processor will make sure the BHT is much larger (in address coverage) than the BTB to prevent this very 
issue (although addresses can still alias), because the BHT should technically provide much better prediction 
abilities than the BTB.  It is also possible that the BHT may only overrule the BTB if the BTB predicts not-taken. 

---- 
notes:

-(1/2) points for not recognizing the reduced misspeculation penalty provided by the BTB.

The BTB can have its own prediction bits, so it can invalidate entries it learns are not taken (so it won’t always 
mispredict the if branch is it sees one zero, followed by a bunch of non-zeros).

Name _________(answer key)________
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Question 4: Iron Law for OoO Superscalar Processors
(30 points)

Mark whether the following modifications will cause each of the categories to increase, 
decrease, or whether the modification will have no effect.  You can assume the baseline 
processor is a standard out-of-order, superscalar processor with register renaming and branch 
prediction. Explain your reasoning to receive full credit.

Assume that in each case the rest of the machine remains unchanged.

Name _________(answer key)________
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END OF QUIZ 

Name _________(answer key)________
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Instructions / Program Seconds / Cycle Cycles / Instruction

wider 
instruction 
issue

no change

doesn’t affect the ISA

increases

a wider instruction issue complicates 
the wiring of the issue logic

decreases

Ideally issuing more instructions per 
cycle will decrease CPI (i.e., IPC is 

increasing). This is the goal of 
widening issue.

more physical 
registers

no change

doesn’t affect the ISA

increases

larger register file will mean longer to 
read from and write to. physical register 

specifiers will also have to be larger, 
increasing the size of the micro-ops, tag 

compares, etc.

decreases

More physical registers provide 
more renaming resources, which will 
help prevent stalls due to running out 

of available physical registers.

add more 
entries to the 
branch target 
buffer (BTB)

no change

doesn’t affect the ISA

increases

BTB entries are large in size and require 
an expensive tag comparison

- or -

no change, if BTB is argued to not be 
on the critical path

decreases

Ideally, adding more entries allows 
the processor to accurately redirect 

the PC on a larger number of 
branches earlier in the pipeline, 
cutting down on mispredicts and 
bubbles caused by waiting on the 

target address calculation.

add static 
branch hints to 
the compiler

no change, 

since we are just adding a new opcode/
type of branch to provide a hint on 

existing branches

- or -

increase, as the compiler re-factors and 
possibly duplicates code to make 

branches more predictable

increases

slightly more complicated decode

- or -

unchanged, doesn’t change logic much 
and decode is probably not on the 

critical path, or can assume no changes 
to ISA

decreases

Static hints are added to help the 
processor better predict branches that 

can be analyzed at compile-time.  

recompile 
software with a 
newer, better 
version of an 
optimizing 
compiler

most likely increase

many performance optimizations (loop 
unrolling, register blocking, software 
pipelining, etc.) will cause the code to 

inflate

- or -

however, one could argue that some 
optimizations, particularly if aiming for 
“-Os” type optimizations, could shrink 

the code size, or that optimizing 
processors will be better at removing 

redundant code

no change

no change is made to the actual 
hardware 

decreases
Ideally, your new compiler does a better 
job than the last one at providing better 

performance, in the way of hiding 
instruction latencies (e.g., loop unrolling) 

or making branches easier to predict, 
which will affect the measured CPI for a 

given program.

- or -
if you argued that your new compiler 

optimizes for code size, then one could 
easily imagine the tradeoff was smaller 

code size for a higher CPI

- or - 
increases, as CPI becomes worse 

because unoptimized code is easier for 
hardware to accelerate.


