

Computer Architecture and Engineering

CS152 Quiz #1
February 19th, 2008

Professor Krste Asanovic

Name:___________________

This is a closed book, closed notes exam.

80 Minutes

 10 Pages

Notes:

• Not all questions are of equal difficulty, so look over the entire exam

and budget your time carefully.

• Please carefully state any assumptions you make.

• Please write your name on every page in the quiz.

• You must not discuss a quiz's contents with students who have not

yet taken the quiz. If you have inadvertently been exposed to the

quiz prior to taking it, you must tell the instructor or TA.

• You will get no credit for selecting multiple choice answers without

giving explanations if the instructions ask you to explain your choice.

Writing name on each sheet ________ 1 Point

 Question 1 ________ 28 Points

 Question 2 ________ 33 Points

 Question 3 ________ 10 Points

 Question 4 ________ 8 Points

TOTAL ________ 80 Points

NAME: ___________________________

Problem Q.1: Microprogramming Bus-Based Architectures

[28 points]

In this problem, we explore microprogramming by writing microcode for the bus-based

implementation of the MIPS machine described in Handout #1 (Bus-Based MIPS

Implementation), which we have included at the end of this quiz for your reference. In

order to further simplify this problem, ignore the busy signal, and assume that the

memory is as fast as the register file. The final solution should be elegant and efficient.

You are to implement in microcode a double indirect addressing mode, as described

below. In this addressing mode, the source register contains a pointer to a location in

memory whose value is a pointer to the location in memory whose value is to be loaded.

The instruction has the following format:

LWmm rd, rs

LWmm performs the following operation:

rd ! M[M[rs]]

Fill in Worksheet Q1-1 with the microcode for LWmm. Use don’t cares (*) for fields

where it is safe to use don’t cares. Study the hardware description well, and make sure

all your microinstructions are legal.

Please comment your code clearly. If the pseudo-code for a line does not fit in the space

provided, or if you have additional comments, you may write in the margins as long as

you do it neatly. Your code should exhibit “clean” behavior and not modify any registers

(except rd) in the course of executing the instruction.

Finally, make sure that the instruction fetches the next instruction (i.e., by doing a

microbranch to FETCH0 as discussed in the Handout).

NAME: ___________________________

State PseudoCode ld

IR
Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

ld
MA

Mem
W

en
Mem

Ex
Sel

en
Imm

µB

r

Next State

FETCH0: MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N *

 PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

0 * * 0 * * * 0 * * 0 * 0 J FETCH0

LWMM0:

Worksheet Q1-1

Problem Q2: Dual ALU Pipeline

[33 points]

In this problem we consider further improvements to the fully bypassed 5-stage MIPS

processor pipelines presented in Lecture 3 and Problem Set 1. The pipeline introduced in

Problem Set 1 had a modified 3rd stage (address calculation) and a modified 4th stage

(parallel data memory and ALU). In this new pipeline we essentially replace the Adder

introduced in Problem Set 1 with a proper ALU, with the goal of eliminating all hazards

(see Figure 2-A).

The Dual ALU Pipeline has two ALUs: ALU1 is in the 3rd pipeline stage (EX1) and

ALU2 is in the 4th pipeline stage (EX2/MEM). A memory instruction always uses ALU1

to compute its address. An ALU instruction uses either ALU1 or ALU2, but never both.

If an ALU instruction’s operands are available (either from the register file or the bypass

network) by the end of the ID stage, the instruction uses ALU1; otherwise, the instruction

uses ALU2.

In this problem, assume that the control logic is optimized to stall only when necessary,

and that the pipeline is fully bypassed. You may ignore branch and jump instructions in

this problem.

Figure 2-A. Dual ALU Pipeline

NAME: ___________________________

Problem Q.2.A ALU Usage

 [15 points]

For the following instruction sequence, indicate which ALU each add instruction uses.

Assume that the pipeline is initially idle (for example, it has been executing nothing but

nop instructions). Registers involved in inter-instruction dependencies are highlighted in

bold for your convenience.

 ALU1 or ALU2?
add r1, r2, r3
lw r4, 0(r1) ----------------------
add r5, r4, r6
add r7, r5, r8
add r1, r2, r3
lw r4, 0(r1) ----------------------
add r5, r1, r6

NAME: ___________________________

Problem Q.2.B Instruction Sequences Causing Stalls

 [18 points]

Indicate whether each of the following instruction sequences causes a stall in the

pipeline and a short summary of the reason why. Consider each sequence separately

and assume that the pipeline is initially idle (for example, it has been executing nothing but

nop instructions). Registers involved in inter-instruction dependencies are highlighted in

bold for your convenience.

 Stall?

(yes/no)

Reason?

add r1, r2, r3

lw r4, 0(r1)

lw r1, 0(r2)

add r3, r1, r4

lw r5, 0(r1)

lw r1, 0(r2)

lw r3, 0(r1)

lw r1, 0(r2)

sw r1, 0(r3)

lw r1, 0(r2)

add r3, r1, r4

sw r5, 0(r3)

lw r1, 0(r2)

add r3, r1, r4

NAME: ___________________________

Problem Q3: ISA Compatibility (Short Yes/No Questions)

 [10 points]

The following questions describe two variants of a processor which are otherwise

identical. In each case, circle "Yes" if the variants might generate different results from

the same compiled program, and circle "No" otherwise. You must also briefly explain

your reasoning and any assumptions you are making. Ignore differences in the time taken

by each machine to execute the program.

Problem Q3.A Interlock vs. Bypassing

Pipelined processor A uses interlocks to resolve data hazards while pipelined processor B

has full bypassing.

Yes / No

Problem Q3.B Delay Slot

Pipelined processor A uses branch delay slots to resolve control hazards while pipelined

processor B kills instructions following a taken branch.

Yes / No

Problem Q3.C Structural Hazard

Pipelined processor A has a single memory port used to fetch instructions and data, while

pipelined processor B has no structural hazards.

Yes / No

Problem Q3.D Microcode size

Microcoded machine A uses 32-bit microcode instructions, while microcoded machine B

uses 64-bit microcode instructions.

Yes / No

Problem Q3.E Register size

Microcoded machine A has 32-bit data registers, while microcoded machine B has 64-bit

data registers.

Yes / No

NAME: ___________________________

Problem Q.4: Iron Law of Processor Performance (Short Answer) [8 points]

Mark whether the following modifications will cause each of the categories to increase, decrease, or whether the modification will

have no effect. Explain your reasoning to receive credit.

 Instructions / Program Cycles / Instruction Seconds / Cycle Reasoning?

Combining two

pipeline stages

Removing a complex

instruction

Running the machine

at a higher clock

frequency

Using a better compiler

NAME: ___________________________

END OF QUIZ MATERIAL

This page intentionally left blank.

The following pages are a replica of Handout #1 (Bus-Based MIPS Implementation)

