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Problem Q3.1: Page Size and TLBs    30 Points 
 
The configuration of the hierarchical page table in this problem is similar to the one in 
Handout #3 (included at the back of the exam for your convenience), but we modify two 
parameters:  1) this problem evaluates a virtual memory system with two page sizes, 4KB 
and 1MB (instead of 4 MB), and 2) all PTEs are 16 Bytes (instead of 8 Bytes).  The 
following figure summarizes the page table structure and indicates the sizes of the page 
tables and data pages (not drawn to scale): 
 

 
The processor has a data TLB with 64 entries, and each entry can map either a 4KB page 
or a 1MB page.  After a TLB miss, a hardware engine walks the page table to reload the 
TLB.  The TLB uses a first-in/first-out (FIFO) replacement policy.  
 
We will evaluate the execution of the following program which adds the elements from 
two 1MB arrays and stores the results in a third 1MB array (note that, 1MB = 1,048,576 
Bytes, the starting address of the arrays are given below): 

 
Assume that the above program is the only process in the system, and ignore any 
instruction memory or operating system overheads. The data TLB is initially empty. 
 
 
 

byte A[1048576]; // 1MB array 0x00001000000 
byte B[1048576]; // 1MB array 0x00001100000 
byte C[1048576]; // 1MB array 0x00001200000 
 
for(int i=0; i<1048576; i++) 
  C[i] = A[i] + B[i]; 
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Problem Q3.1.A   5 Points 
 
Consider the execution of the program. Assume that there is no data cache, and that each 
memory lookup has 100 cycle latency.  Note that the program loop accesses memory one 
byte at a time. 
 
If all data pages are 4KB, compute the ratio of cycles for address translation to cycles for 
data access. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem Q3.1.B   5 Points 

 
 
If all data pages are 1MB, compute the ratio of cycles for address translation to cycles for 
data access. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



Problem Q3.1.C 10 Points 
 
For this question, assume that in addition we will add a PTE cache with single cycle 
latency. A PTE cache will cache page table entries from any level in order to speed up 
address translation. If this PTE cache has unlimited capacity and is fully associative, 
compute the ratio of cycles for address translation to cycles for data access for the 4KB 
data page case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem Q3.1.D 5 Points 
 
When running this code on a system with both a PTE cache and a TLB, is there any 
benefit to caching L3 PTE entries in the PTE cache? Explain. 
 
 
 
 
 
 
 

Problem Q3.1.E 5 Points 
 
What is the minimum capacity (number of entries) needed in the PTE cache to get the 
same performance on this code as an unlimited PTE cache? (Assume that the fully 
associative PTE cache does not cache L3 PTE entries and all data pages are 4KB) 
 
 
 
 
 
 



Problem Q3.2: 64-bit Address Spaces    25 Points 
 
Ben read in a recent technical journal that many current implementations of 64-bit ISAs 
implement only part of the large virtual address space. They usually segment the virtual 
address space into three parts: one used for stack, one used for code and heap data, and 
the third one unused. Ben’s proposed processor’s virtual address space is shown below:  
 
 
 
 
 
 
 
 
 
 
 
 
 
A special circuit is used to detect whether the top eight bits of an address are all zeros or 
all ones before the address is sent to the virtual memory system. If they are not all equal, 
an invalid virtual memory address trap is raised. This scheme in effect removes the top 
seven bits from the virtual memory address, but retains a memory layout that will be 
compatible with future designs that implement a larger virtual address space.  

 

 

 

Alyssa P. Hacker is unhappy with the large hole in the virtual address space given by  
Ben’s scheme. She decides that a hashed page table is the way to go. Again, the machine 
has a 64-bit virtual address and 4KB pages. The hardware paging system has only one 
page table with 64 slots, each containing 8 PTEs. Alyssa decides to use X mod 64 as the 
hash function to select a slot, where X is the VPN. The page table resides in memory and 
Alyssa’s design has no TLB, so each PTE read requires one memory access.  During a 
page table lookup, all PTEs in each slot are searched sequentially until a match is found 
(each of these sequential accesses is a memory access). If there is a miss in the page 
table, a trap is raised and a software handler will refill the page table, with each refill 
requiring 10 memory accesses on average.  
 
 
 
 
 
 
Problem Q3.2.A 12 Points 
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Alyssa is happy with her new modification and runs a very simple benchmark that 
repeatedly loops over an array of 221 bytes, reading one byte at a time in sequential 
address order. On average in the steady state, how many memory accesses are 
performed for each byte read by the user program?  Ignore the memory traffic for 
instruction fetch, assume that the array starts on a page boundary, and there are no other 
memory accesses in the user code apart from the single byte memory accesses.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem Q3.2.B 5 Points 

Alyssa now decides to add a one-entry TLB to the hashed paging system.  What should 
the replacement policy for the TLB be?  Circle the most appropriate of the following 
choices and explain:  
  
a) FIFO  
b) LRU  
c) Random  
d) Doesn’t matter, all of the above give the same performance  
 
 
 
 
 
 
 
 
 
Problem Q3.2.C 8 Points 

Given your answer to the previous question, what is now the average number of memory  



accesses per user byte read for Alyssa’s benchmark?   
 
 



Problem Q3.3: Virtual Memory and Caches 24 Points 
 
Problem Q3.3.A 8 Points 

 
Ben Bitdiddle is designing a one level 4-way set associative cache that is virtually 
indexed and virtually tagged. He realizes that such a cache suffers from a homonym 
aliasing problem. The homonym problem happens when two processes use the same 
virtual address to access different physical locations. Ben asks Alyssa P. Hacker for help 
with solving this problem. She suggests that Ben should add a PID (Process ID) to the 
virtual tag. Does this solve the homonym problem? Explain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem Q3.3.B 8 Points 

 
Another problem with virtually indexed and virtually tagged caches is called the synonym 
problem. The synonym problem happens when distinct virtual addresses refer to the same 
physical location. Does Alyssa’s idea solve this problem? Explain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problem Q3.3.C 8 Points 
 
Ben thinks that a different way of solving synonym and homonym problems is to have a 
direct mapped cache, rather than a set associative cache. Is he right? Explain. 
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Hierarchical Page Table Supporting Variable-Sized Pages 
 
Small fixed-sized pages (e.g. 4 KB) reduce internal fragmentation and the page fault 
penalty compared to large fixed-sized pages.  However, when we run an application with 
a large working set, they may degrade a processor’s performance by incurring a number 
of TLB misses because of their small TLB reach.  Therefore, researchers have proposed 
to support variable-sized pages to increase the TLB reach without losing the benefits of 
small fixed-sized pages. Many modern processor families (e.g. UltraSparc, PA-RISC, 
MIPS) and operating systems (e.g. Sun Solaris, SGI IRIX) support this feature.   
 
In this handout, we present an example implementation of variable-sized pages, 
supporting only two page sizes:  4 KB and 4 MB.  Assume that the system uses 44-bit 
virtual addresses and 40-bit physical addresses.  4KB pages are mapped using a three-
level hierarchical page table.  4MB pages are mapped using the first two levels of the 
same page table.  An L2 Page Table Entry (PTE) contains information which indicates if 
it points to an L3 table or a 4MB data page.  All PTEs are 8 Bytes.  The following figure 
summarizes the page table structure and indicates the sizes of the page tables and data 
pages (not drawn to scale): 
 
 

 
Figure H8-A. Example implementation of variable-sized pages. 
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Page Table Entries and Translation Lookaside Buffers 
 
Each Page Table Entry (PTE) will map a virtual page number (VPN) to a physical page 
number (PPN).  In addition to the page number translation, each page table entry also 
contains some permission/status bits. 

 
Bit Name Bit Definition 
PPN / DBN Physical Page Number / Disk Block Number 
V (valid) 1 if the page table entry is valid, 0 otherwise 
R (resident) 1 if the page is resident in memory, 0 otherwise 
W (writable) 1 if the page is writable, 0 otherwise 
U (used) 1 if the page has been accessed recently, 0 otherwise 
M (modified) 1 if the page has been modified, 0 otherwise 
S (supervisor) 1 if the page is only accessible in supervisor mode, 0 otherwise 

 
Each entry in the Translation Lookaside Buffer (TLB) has a tag that is matched against 
the VPN and a TLB Entry Valid bit (note, the TLB Entry Valid bit is not the V bit shown 
in the table above).  The TLB Entry Valid bit will be set if the TLB entry is valid.  Each 
TLB entry also contains all the fields from the page table that are listed above.   
 
A TLB miss (VPN does not match any of the tags for entries that have the TLB Entry 
Valid bit set) causes an exception.  On a TLB miss kernel software will load the page 
table entry into the TLB and will restart the memory access.  (Kernel software can 
modify anything in the TLB that it likes and always runs in supervisor mode).  If the 
entry being replaced was valid, then the kernel will also write the TLB entry that is being 
replaced back to the page table.   
 
Hardware will set the used bit whenever a TLB hit to the corresponding entry occurs.  
Similarly, the modified bit (in the TLB entry) will be set when a store to the page 
happens. 
 
All exceptions that come from the TLB (hit or miss) are handled by software. For 
example, the possible exceptions are as follows: 
 
TLB Miss: VPN does not match any of tags for entries that have the 

TLB Entry Valid bit set. 

Page Table Entry Invalid: Trying to access a virtual page that has no mapping to a 
physical address. 

Write Fault (Store only): Trying to modify a read-only page (W is 0). 
Protection Violation: Trying to access a protected (supervisor) page while in user 

mode. 
Page Fault: Page is not resident. 
 
(Unless noted, exceptions can occur for both loads and stores.) 
 


