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Problem Q.1.A Cache Performance 
 [6 points] 

 
This problem evaluates the cache performance of the following C code, which transposes 
a square matrix A, placing the result in another matrix B. 
 
#define N 1024 
int A[N*N], B[N*N]; 
int i,j; 
 
for(i = 0; i < N; i++) 
  for(j = 0; j < N; j++) 
    B[j*N+i] = A[i*N+j];  
 
Assume A and B are both aligned to a 4KB boundary and are contiguous in memory.  
ints are 32 bits (4 bytes). 
 
 
 
 
Q.1.A – Cache Performance [6 points] 
Consider a 4KB two-way set-associative cache with LRU replacement and 8-word (32-
byte) cache lines.  What will the store miss rate be when running the code?  What will the 
load miss rate be when running the code? 
 
This problem is simplified by LRU replacement: accesses to A and B will not conflict 
with each other in the cache.  Thus, the store and load miss rates can be calculated 
independently of each other. 
 
Loads are unit-stride.  Every eighth load will cause a compulsory miss, and the 
intervening seven loads will hit.  (Spatial locality is fully exploited.)  The load miss rate 
is thus 1/8. 
 
Stores have a 4KB stride.  The first outer-loop iteration, all stores are compulsory misses.  
After that, all stores incur capacity misses before spatial locality can be exploited.  The 
store miss rate is thus 100%. 
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Problem Q.1.B-C Cache Performance 
 [10 points] 

 
Q.1.B – Replacement Policy [4 points] 
How will the load miss rate change if a FIFO (first-in, first-out) replacement policy is 
employed instead of LRU? 
 
In the vicinity of the matrix’s diagonal, B’s accesses will map to the same set as A’s 
accesses.  While LRU replacement kept A’s accesses in the cache, FIFO will cause a 
cache miss on every second load in this situation.  The result is three load conflict misses 
every outer loop iteration, resulting in a slightly higher load miss rate of (128+3)/1024. 
 
 
 
 
 
 
 
 
Q.1.C – Cache Design [6 points] 
Assuming the same cache parameters as in part A, which of the following cache 
configurations will perform best when executing this code?  Circle one, and justify your 
answer for credit. 
 
1) Write-Allocate, Write-Back 
2) Write-Allocate, Write-Through (with a write buffer) 
3) No Write-Allocate, Write-Back 
4) No Write-Allocate, Write-Through (with a write buffer) 
 
No Write-Allocate, Write-Through is the best configuration.  Recall that all stores miss 
and there are no loads from the lines that are stored-to.  Then, consider the amount of 
traffic between the L1 and L2 caches in each scenario.  For every store, WA caches will 
cause 32 bytes of read traffic that is simply discarded.  WA+WB caches will cause 32 
bytes of write traffic on every store—a total of 64 bytes of L1<->L2 traffic for a 4 byte 
store.  WA+WT caches reduce this to 36 bytes, but the allocation traffic is still wasteful.   
 
NWA+WB caches behave similarly to NWA+WT: stores never hit, so writebacks never 
occur; thus, only 4 bytes are transferred to the L2 for every store in this code.  But the 
lack of a write buffer makes the miss penalty much greater for NWA+WB than for 
NWA+WT, so the latter option is best. 
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Problem Q.1.D-E Cache/VM Performance 
 [12 points] 

 
Q.1.D – Code Optimization [7 points] 
Now, consider a 4KB fully associative cache with LRU replacement and 8-word (32-
byte) cache lines.  Describe how the code could be rewritten to eliminate all non-
compulsory misses. 
 
An important insight is that matrix transposition, like matrix multiplication, can be 
blocked/tiled to take advantage of spatial locality for the stores.  Since the cache is fully 
associative, several blocking strategies suffice; a simple one is to transpose 8x1 blocks at 
a time.  This works because an entire cache line will be stored at a time, but associativity 
allows the 8 rows of A and the 1 row of B to be cached simultaneously, even though they 
map to the same set.  (Note that this code requires that the block size B divides N). 
 
#define N 1024 
#define B 8 
int A[N*N], B[N*N]; 
int i,j,k; 
 
for(i = 0; i < N; i+=B) 
  for(j = 0; j < N; j++) 
    for(k = 0; k < B; k++) 
      B[j*N+(i+k)] = A[(i+k)*N+j]; 
 
Credit was given to any strategy that eliminated non-compulsory misses without 
changing the semantics of the code.  Source code was not required; a description of the 
blocking strategy was sufficient. 
 
Q.1.E – Address Translation Performance [5 points] 
Suppose the code is executed on a system with virtual memory.  Assuming 4KB pages 
and a 1024-entry direct-mapped TLB, how many TLB misses occur when executing this 
code?  
 
Each matrix is 4MB, so 2x4MB/4KB = 2048 compulsory misses occur.  Let Ak refer to 
matrix A, row k (which occupies exactly one TLB entry).  After some outer iteration i, 0 
≤ i < N-1, TLB[k] contains Bk, k≠i, and TLB[i] contains Ai.  So, during outer iteration 
i+1, the store to Bi will miss, then the store to Bi+1 will miss (since TLB[i+1] now 
contains Ai+1).  Then, the next load to Ai+1 will miss.  So every iteration, 3 conflict misses 
occur (3072 total), for a total of 5120 including compulsory misses.  (Actually, only one 
conflict occurs the zeroth iteration and two the last iteration, so the total is 5117, but this 
is a detail.) 
 

Number of TLB Misses  5117 
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Problem Q.2:  Microtagged Cache   

[28 points] 
 
In this problem, we explore microtagging, a technique to reduce the access time of set-
associative caches.  Recall that for associative caches, the tag check must be completed 
before load results are returned to the CPU, because the result of the tag check determines 
which cache way is selected.  Consequently, the tag check is often on the critical path. 
The time to perform the tag check (and, thus, way selection) is determined in large part 
by the size of the tag.  We can speed up way selection by checking only a subset of the 
tag—called a microtag—and using the results of this comparison to select the appropriate 
cache way.  Of course, the full tag check must also occur to determine if the cache access 
is a hit or a miss, but this comparison proceeds in parallel with way selection.  We store 
the full tags separately from the microtag array. 
We will consider the impact of microtagging on a 4-way set-associative 16KB data cache 
with 32-byte lines.  Addresses are 32 bits long.  Microtags are 8 bits long.  The baseline 
cache (i.e. without microtagging) is depicted in Figure H2-B in the attached handout.  
Figure 1, below, shows the modified tag comparison and driver hardware in the 
microtagged cache.  

 
Figure 1: Microtagged cache datapath
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Problem Q.2.A Cache Cycle Time 
 [8 points] 

 
Q.2.A – Cycle Time [8 points] 
Table 1, below, contains the delays of the components within the 4-way set-associative 
cache, for both the baseline and the microtagged cache. For both configurations, 
determine the critical path and the cache access time (i.e., the delay through the critical 
path).  
 
Assume that the 2-input AND gates have a 50ps delay and the 4-input OR gate has a 
100ps delay. 
 

Component Delay equation (ps)  Baseline Microtagged 
Tag 240 240 Decoder 20×(# of index bits) + 100 
Data 240 240 
Tag 330 330 
Data 440 440 

Memory array 20×log2 (# of rows) +  
20×log2 (# of bits in a row) + 
100 Microtag  300 

Tag 500 500 Comparator 20×(# of tag bits) + 100 
Microtag  260 

N-to-1 MUX 50×log2 N + 100  200 200 
Buffer driver 200  200 200 
Data output 
driver 

50×(associativity) + 100  300 300 

Valid output 
driver 

100  100 100 

 
Table 1:  Delay of each cache component  

 
 
 
Old Critical Path ________________________________ 

 
New Critical Path ________________________________ 

 
Old Cycle Time __________ ps 

 
New Cycle Time __________ ps 
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Problem Q.2.B-C Microtagged Cache 
 [10 points] 

 
Q.2.B – AMAT [5 points] 
Assume temporarily that both the baseline cache and the microtagged cache have the 
same hit rate, 95%, and the same average miss penalty, 20 ns.  Using the cycle times 
computed in Q.1.A as the hit times, compute the average memory access time for both 
caches. 
 
 
 
 
 

Old AMAT __________ ns 
 

New AMAT __________ ns 
 
 
Q.2.C – Microtagging Constraints [5 points] 
Microtags add an additional constraint to the cache: in a given cache set, all microtags 
must be unique.  This constraint is necessary to avoid multiple microtag matches in the 
same set, which would prevent the cache from selecting the correct way. 
 
State which of the 3C’s of cache misses this constraint affects.  How will the cache miss 
rate compare to an ordinary 4-way set-associative cache?  How will it compare to that of 
a direct-mapped cache of the same size? 
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Problem Q.2.D-E Virtual Memory 
 [10 points] 

 
Q.2.D – Aliasing [5 points] 
We now consider the effects of address translation on the microtagged cache.  To avoid 
placing the TLB on the critical path, we use virtual microtags (i.e., the microtags are a 
subset of the virtual tag).  The complete tags, however, are physical. 
 
Without further modifications, it is possible for aliasing to occur in this cache.  Carefully 
explain why this is the case. 
  
 
 
 
 
 
 
 
 
 
 
 
Q.2.E – Anti-Aliasing [5 points] 
Propose an efficient solution to prevent aliasing in this cache.  (Hint: it is not necessary to 
use the technique discussed in lecture, i.e. using the L2 cache to detect aliases.) 
 


