NAME:

Computer Architecture and Engineering

CS152 Quiz #2
March 9th, 2010
Professor Krste Asanovic

Name:

This is a closed book, closed notes exam.
80 Minutes
9 Pages

Notes:

* Not all questions are of equal difficulty, so look over the entire exam
and budget your time carefully.

* Please carefully state any assumptions you make.

* Please write your name on every page in the quiz.

* You must not discuss a quiz's contents with students who have not
yet taken the quiz. If you have inadvertently been exposed to the
quiz prior to taking it, you must tell the instructor or TA.

* You will get no credit for selecting multiple-choice answers without
giving explanations if the instructions ask you to explain your choice.

Writing name on each sheet 1 Point
Question 1 28 Points
Question 2 28 Points
Question 3 23 Points

TOTAL 80 Points

NAME:

Problem Q.1.A Cache Performance
[6 points]

This problem evaluates the cache performance of the following C code, which transposes
a square matrix A, placing the result in another matrix B.

#define N 1024
int A[N*N], B[N*N];
int i,3;

for(i = 0; i < N; i++)
for(j = 0; j < N; j++)
B[jJ*N+i] = A[i*N+j];

Assume A and B are both aligned to a 4KB boundary and are contiguous in memory.
ints are 32 bits (4 bytes).

Q.1.A — Cache Performance [6 points]

Consider a 4KB two-way set-associative cache with LRU replacement and 8-word (32-
byte) cache lines. What will the store miss rate be when running the code? What will the
load miss rate be when running the code?

NAME:

Problem Q.1.B-C Cache Performance
[10 points]

Q.1.B — Replacement Policy [4 points]
How will the load miss rate change if a FIFO (first-in, first-out) replacement policy is
employed instead of LRU?

Q.1.C — Cache Design [6 points]

Assuming the same cache parameters as in part A, which of the following cache
configurations will perform best when executing this code? Circle one, and justify your
answer for credit.

1) Write-Allocate, Write-Back

2) Write-Allocate, Write-Through (with a write buffer)

3) No Write-Allocate, Write-Back

4) No Write-Allocate, Write-Through (with a write buffer)

NAME:

Problem Q.1.D-E Cache/VM Performance
[12 points]

Q.1.D — Code Optimization [7 points]

Now, consider a 4KB fully associative cache with LRU replacement and 8-word (32-
byte) cache lines. Describe how the code could be rewritten to eliminate all non-
compulsory misses.

Q.1.E — Address Translation Performance [S points]

Suppose the code is executed on a system with virtual memory. Assuming 4KB pages
and a 1024-entry direct-mapped TLB, how many TLB misses occur when executing this
code?

Number of TLB Misses 5117

NAME:

Problem .2: Microtagged Cache
[28 points]

In this problem, we explore microtagging, a technique to reduce the access time of set-
associative caches. Recall that for associative caches, the tag check must be completed
before load results are returned to the CPU, because the result of the tag check determines
which cache way is selected. Consequently, the tag check is often on the critical path.

The time to perform the tag check (and, thus, way selection) is determined in large part
by the size of the tag. We can speed up way selection by checking only a subset of the
tag—called a microtag—and using the results of this comparison to select the appropriate
cache way. Of course, the full tag check must also occur to determine if the cache access
is a hit or a miss, but this comparison proceeds in parallel with way selection. We store
the full tags separately from the microtag array.

We will consider the impact of microtagging on a 4-way set-associative 16KB data cache
with 32-byte lines. Addresses are 32 bits long. Microtags are 8 bits long. The baseline
cache (i.e. without microtagging) is depicted in Figure H2-B in the attached handout.
Figure 1, below, shows the modified tag comparison and driver hardware in the
microtagged cache.

’ Rest of Tag Microtag I Index I Offset ‘
v v index (bits 11:5) y
~ v.\ ~N J‘« X /
= Tag Decoder | —[/| plrome | Data Decoder
= 1S
%) i —_
3 E X
P g £z
e = =
= kS Microtdg o
2 Tag JArray = ey é |Data Array
=== e
| TLB 1
| IP——
[] [[[0]
‘ ' " y ‘ o
Iy =
\ | s> "
/ r I 3
g Y
L > Y
| > —
s y 4
- data out

Figure 1: Microtagged cache datapath

Problem Q.2.A

NAME:

Cache Cycle Time

|8 points]

Q.2.A — Cycle Time [8 points]
Table 1, below, contains the delays of the components within the 4-way set-associative

cache, for both the baseline and the microtagged cache. For both configurations,

determine the critical path and the cache access time (i.e., the delay through the critical

path).
Assume that the 2-input AND gates have a 50ps delay and the 4-input OR gate has a
100ps delay.
Component Delay equation (ps) Baseline | Microtagged
Decoder 20x(# of index bits) + 100 Tag 240 240
Data 240 240
Memory array 20xlog; (# of rows) + Tag 330 330
20xlog, (# of bits in a row) + Data 440 440
100 Microtag 300
Comparator 20x(# of tag bits) + 100 Tag 500 500
Microtag 260
N-to-1 MUX 50xloga N + 100 200 200
Buffer driver 200 200 200
Data output 50x(associativity) + 100 300 300
driver
Valid output 100 100 100
driver
Table 1: Delay of each cache component
Old Critical Path
New Critical Path
Old Cycle Time ps
New Cycle Time ps

NAME:

Problem Q.2.B-C Microtagged Cache
[10 points]

Q.2.B — AMAT |5 points]|

Assume temporarily that both the baseline cache and the microtagged cache have the
same hit rate, 95%, and the same average miss penalty, 20 ns. Using the cycle times
computed in Q.1.A as the hit times, compute the average memory access time for both
caches.

Old AMAT ns

New AMAT ns

Q.2.C — Microtagging Constraints [S points]

Microtags add an additional constraint to the cache: in a given cache set, all microtags
must be unique. This constraint is necessary to avoid multiple microtag matches in the
same set, which would prevent the cache from selecting the correct way.

State which of the 3C’s of cache misses this constraint affects. How will the cache miss
rate compare to an ordinary 4-way set-associative cache? How will it compare to that of
a direct-mapped cache of the same size?

NAME:

Problem Q.2.D-E Virtual Memory
[10 points]

Q.2.D — Aliasing [S points]

We now consider the effects of address translation on the microtagged cache. To avoid
placing the TLB on the critical path, we use virtual microtags (i.e., the microtags are a
subset of the virtual tag). The complete tags, however, are physical.

Without further modifications, it is possible for aliasing to occur in this cache. Carefully
explain why this is the case.

Q.2.E — Anti-Aliasing [S points]
Propose an efficient solution to prevent aliasing in this cache. (Hint: it is not necessary to
use the technique discussed in lecture, i.e. using the L2 cache to detect aliases.)

