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Based on Two Talks
In-Data Center Performance Analysis of a Tensor Processing Unit
ISCA 2017, Jouppi, Young, Patil, Patterson, et al.
(TPUv1, for inference)

Codesign in Google TPUs, by Cliff Young, HotChips 2017
(TPUv2 and later, for training and inference)
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End of Growth of Performance?
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End of 
Moore’s

Law
⇒

2X / 
20 yrs
(3%/yr)

RISC
2X / 1.5 

yrs
(52%/yr)

CISC
2X / 3.5 yrs

(22%/yr)

End of 
Dennard
Scaling

⇒
Multicore
2X / 3.5 

yrs
(23%/yr)

Am-
dahl’s
Law
⇒

2X / 
6 yrs

(12%/yr)

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018



What’s Left?
Since

● Transistors not getting much better
● Power budget not getting much higher
● Already switched from 1 inefficient 

processor/chip to N efficient processors/chip
Only path left is Domain Specific Architectures

● Just do a few tasks, but extremely well
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“cat”

● Loosely based on 
(what little) we know 
about the brain

What is Deep Learning?

Slide from "Large-Scale Deep Learning with TensorFlow for Building Intelligent Systems," by Jeff Dean, ACM Webinar, 7/7/16 5



Key NN Concepts for Architects
● Training or learning (development) 

vs. Inference or prediction (production)
● Batch size

○ Problem: DNNs have millions of weights that 
take a long time to load from memory (DRAM)

○ Solution: Large batch ⇒ Amortize weight-fetch time by 
inferring (or training) many input examples at a time

● Floating-Point vs. Integer (“Quantization”)
○ Training in Floating Point on GPUs popularized DNNs
○ Inferring in Integers faster, lower energy, smaller
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TPUv1 
Origin
Story

● 2013: Prepare for success-disaster of new DNN apps
● Scenario with users speaking to phones 3 minutes per day:

If only CPUs, need 2X-3X times whole fleet
● Unlike some hardware targets, DNNs applicable to a wide range of problems, so 

can reuse for solutions in speech, vision, language, translation, search ranking, ...
● Custom hardware to reduce the TCO of DNN 

inference phase by 10X vs. CPUs
● Must run existing apps developed for CPUs and GPUs

● A very short development cycle 
● Started project 2014, running in datacenter 15 months later:

Architecture invention, compiler invention, hardware design, build, test, deploy
● Google CEO Sundar Pichai reveals Tensor Processing Unit 

at Google I/O on May 18, 2016 as “10X performance/Watt”
cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
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Tensor Processing Unit v1 (deployed 2015)

Google-designed chip for neural net inference

In production use for ≈4 years: used by billions on 
search queries, for neural machine translation,
for AlphaGo match, …

A Domain-Specific Architecture for Deep Neural Networks, Jouppi, 
Young, Patil, & Patterson, Communications of the ACM, September 
2018



TPUv1 Card & Package● TPUv1 Card to replace a disk
● Up to 4 cards / server
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Inference Datacenter Workload (95%)
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Name LOC
Layers

Nonlinear 
function Weights

TPUv1 
Ops / 

Weight 
Byte

TPUv1 
Batch 
Size

% 
Deployed

FC Conv Vector Pool Total
MLP0 0.1k 5 5 ReLU 20M 200 200 61%
MLP1 1k 4 4 ReLU 5M 168 168

LSTM0 1k 24 34 58 sigmoid, 
tanh 52M 64 64

29%
LSTM1 1.5k 37 19 56 sigmoid, 

tanh 34M 96 96

CNN0 1k 16 16 ReLU 8M 2888 8 5%
CNN1 1k 4 72 13 89 ReLU 100M 1750 32



TPUv1 Architecture 
and Implementation

● Add as accelerators to 
existing servers

● So connect over I/O bus (“PCIe”)
● TPUv1 ≈ matrix accelerator on I/O bus

● Host server sends it instructions like a 
Floating Point Unit

● Unlike GPU that fetches and executes own 
instructions
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TPUv1: High-level Chip 
Architecture

● 4 MiB of on-chip Accumulator 
memory

● The Matrix Unit: 65,536 (256x256) 
8-bit multiply-accumulate units

● 700 MHz clock rate
● Peak: 92T operations/second 

○ 65,536 * 2 * 700M
● >25X as many MACs vs GPU
● >100X as many MACs vs CPU

● 24 MiB of on-chip Unified Buffer 
(activation memory)

● 3.5X as much on-chip memory 
vs GPU

● Two 2133MHz DDR3 DRAM 
channels

● 8 GiB of off-chip weight DRAM 
memory 12



TPUv1: a Neural 
Network 

Accelerator Chip
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TPUv1 Architecture, 
programmer’s view

● 5 main (CISC) instructions
Read_Host_Memory
Write_Host_Memory
Read_Weights
MatrixMultiply/Convolve
Activate(ReLU,Sigmoid,Maxpool,LRN,…)

● Average Clock cycles per instruction: >10
● 4-stage overlapped execution, 1 instruction type / stage

● Execute other instructions while matrix multiplier busy
● Complexity in SW: No branches, in-order issue,  

SW controlled buffers, SW controlled pipeline synchronization
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Systolic Execution in 
Matrix Array

● Problem: energy/ time for 
repeated SRAM accesses 
of matrix multiply

● Solution: “Systolic Execution” to 
compute data on the fly in 
buffers by pipelining control and 
data
● Relies on data from different directions 

arriving at cells in an array at regular 
intervals and being combined 15



Systolic Execution:
Control and Data are pipelined



. 

. 

.

+ + + +

. . .

Can now ignore pipelining in matrix
Pretend each 256B input read at once, & they instantly 
update 1 location of each of 256 accumulator RAMs.

Control

Magic instant 
adders™



Relative Performance: 3 Contemporary Chips (2015)

Processor mm2 Clock 
MHz

TDP 
Watts

Idle 
Watts

Memory 
GB/sec

Peak TOPS/chip

8b int. 32b FP

CPU: Haswell 
(18 core) 662 2300 145 41 51 2.6 1.3

GPU: Nvidia 
K80 (2 / card) 561 560 150 25 160 -- 2.8

TPUv1 <331* 700 75 28 34 91.8 --

K80 and TPUv1 in 28 nm process; Haswell fabbed in Intel 22 nm process

18These chips and platforms chosen for comparison because widely deployed in Google data centers

*TPUv1 is less than half die size of the Intel Haswell processor



Relative Performance: 
3 Platforms

GPUs and TPUs added to 
CPU server

Processor
Chips/
Server DRAM TDP 

Watts
Idle 

Watts

Observed 
Busy Watts 

in datacenter

CPU: Haswell (18 cores) 2 256 GB 504 159 455

NVIDIA K80 (13 cores)
(2 die per card;
4 cards per server)

8
256 GB 
(host) + 

12GB x 8
1838 357 991

TPUv1 (1 core) 
(1 die per card; 
4 cards per server)

4
256GB 
(host) + 
8GB x 4

861 290 384

These chips and platforms chosen for comparison because widely deployed in Google datacenters 19



Roofline Visual 
Performance Model

2 Limits to performance:
1. Peak Computation
2. Peak Memory Bandwidth 

(For apps with large data that 
don’t fit in cache)

GFLOP/s = Min(Peak GFLOP/s, Peak GB/s x AI)

Arithmetic Intensity (FLOP/byte 
or reuse) determines which limit
Weight-reuse = Arithmetic 
Intensity for DNN roofline

Samuel Williams, Andrew Waterman, and David Patterson. "Roofline: an insightful visual 
performance model for multicore architectures."Communications of the ACM 52.4 (2009): 65-76.
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TPUv1 Die Roofline
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Haswell (CPU) Die Roofline
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K80 (GPU) Die Roofline
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Why so far below Rooflines? (MLP0)
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Type Batch 99th% Response Inf/s (IPS) % Max IPS
CPU 16 7.2 ms 5,482 42%
CPU 64 21.3 ms 13,194 100%
GPU 16 6.7 ms 13,461 37%
GPU 64 8.3 ms 36,465 100%

TPUv1 200 7.0 ms 225,000 80%
TPUv1 250 10.0 ms 280,000 100%



Log Rooflines for CPU, GPU, TPUv1
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Star = TPUv1
Triangle = GPU
Circle = CPU



Linear Rooflines for CPU, GPU, 
TPUv1
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Star = TPUv1
Triangle = GPU
Circle = CPU



Perf/Watt TPUv1 vs CPU & GPU
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~80X incremental perf/W of Haswell CPU
~30X incremental perf/W of K80 GPU



Improving TPUv1: 
Move “Ridge Point” to 

the left

● Current DRAM
● 2 DDR3 2133 ⇒ 34 GB/s

● Replace with GDDR5 like in 
K80 ⇒ 180 GB/s

● Move Ridge Point from 
1400 to 256
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Revised TPUv1 Raises Roofline
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Improves performance 4X for 
LSTM1, LSTM0, MLP1, MLP0 



Perf/Watt Original & Revised TPUv1
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~200X incremental perf/W of Haswell CPU
~70X incremental perf/W of K80 GPU



Related Work
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TPUv1 succeeded because of 
● Large matrix multiply unit
● Substantial software-controlled on-chip memory
● Run whole inference models to reduce host CPU 
● Single-threaded, deterministic execution model 

good match to 99th-percentile response time
● Enough flexibility to match NNs of 2017 vs. 2013 
● Omission of GP features ⇒ small, low power die 
● Use of 8-bit integers in the quantized apps
● Apps in TensorFlow, so easy to port at speed

Conclusions (1/2) 

32



Conclusions (2/2) 
● Inference prefers latency over throughput
● K80 GPU relatively poor at inference (vs. training)
● Small redesign improves TPUv1 at low cost
● 15-month design & live on I/O bus yet TPUv1 15X-

30X faster Haswell CPU, K80 GPU (inference), 
<½ die size, ½ Watts 

● 65,536 (8-bit) TPUv1 MACs cheaper, lower energy, & 
faster 576 (32-bit) CPU MACs, 2496 GPU (32-bit) MACs

● 10X difference in computer products are rare 33



Two Talks
In-Data Center Performance Analysis of a Tensor Processing Unit
ISCA 2017, Jouppi, Young, Patil, Patterson, et al.
(TPUv1, for inference)

Codesign in Google TPUs
(TPUv2 and later, for training and inference)
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Observation: Training >> Inference

3x the computation: forward propagation, backward propagation, and weight update.
Much longer data storage lifetimes: memory capacity and bandwidth.
Huge training datasets for training, versus scale-out to serve inference.
Changes to algorithms and model structure require more flexibility. 
Many more potential Amdahl’s Law bottlenecks.

35

“cat”



Exponential Growth in Deep Learning
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ArXiv papers about ML
~18 months

Google project directories
~18 months

FLOPs to train a model
~3.5 months

(~10X per year)

Why all this growth? Because Deep Learning works. 



Classic Codesign at the HW/SW Interface

Definition: design spanning two fields for a common goal.
● Classic version is between architecture and compiler. 

Instruction Set Architecture (ISA) as interface/contract between levels.

Example of pushing things back and forth: instruction scheduling.
● VLIW (static scheduling)
● OoO (dynamic scheduling)
● Answer today=both.

Ultimately ISA is a single thin layer between the hardware and software domains. 

HW SWIS
A
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Codesign for Domain-Specific Architectures

(conceptual, not rigorous diagram)

Now, there are many different layers, with many different interfaces.

TPUs are still digital (for now).
● Some startups are pushing into physics (NVRAM, Flash, optical).
● Need to do codesign from physics to application: hard!

HW
Library

Physics Compiler Numerics

Algorithms

ApplicationIS
A

Model
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Fallacy: TPUs are ASICs, so they are not Programmable
ASIC: Application-Specific Integrated Circuit

Means only “build whatever you want into the chip.” 
ASICs include general-purpose cores, SoCs, and fixed-function designs.

TPUs are Domain-Specific Architectures (DSAs) for Machine Learning.
We designed them to meet our current and future needs.
They include the flexibility to handle future models.
Choosing the right amount of flexibility is central to our codesign process.

For the technically nitpicky:
TPUv1 is a coprocessor, controlled by the host.
TPUv2 and successors are Turing-complete. 
TPUs power both Google research and Google production applications.

39



Confidential + Proprietary

Training: DNN Supercomputer or Cluster of CPUs with DNN 
Accelerators? 

● Single-chip system—built as coprocessor to a CPU like TPUv1—would work fine for 
inference and standard cluster networks 

○ AlphaGo used cluster of 64 TPUv1 chips

● Went instead with large supercomputer because
○ Training takes weeks to months on single chip for our production training runs
○ Deep neural network wisdom was bigger datasets + bigger machines led to breakthroughs

● Build a NN supercomputer (TPU v2/v3) vs build a NN coprocessor chip (TPU v1)

40



Codesign: Datacenter-scale Supercomputer

Three ways to spend on computer architectural resources:
● Compute 
● Memory
● Interconnect 

Cloud TPUs were designed from the beginning to be networked.
● Data parallelism through increased batch size scales seamlessly today.
● Model parallelism is underway.
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Confidential + Proprietary

ML Quality ≈ Correctness: Fast but Incorrect Uninteresting

● 1% quality loss to ML practitioners can be like getting wrong answer
○ Aiming for intelligent app for a billion people, so lower quality can mean 

worse experience for millions of people / loss of income
● For datacenter production apps, training has to be in floating point

○ Researchers exploring fixed point for training but at cost in quality
○ Production remains floating point (but FP32 sufficient, no need for FP64)

42



Codesign: Reduced-precision numerics

Neural-network researchers showed that inference did not need float32 precision.
Vanhoucke, V., Senior, A. and Mao, M.Z., 2011, December. Improving the speed of neural networks on CPUs.
In Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop (Vol. 1, p. 4).

TPUv1 deployed with int8 hardware and support for int16 through software.
int16 intended as “insurance”; used mostly in LSTM-based models.

Training has traditionally been done in floating point. 

Q: Does training require full float32 resolution? 
A: Not everywhere. But where matters. 
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M M M M M M M M M M M M M M M M M M M M M M MS E E E E E E E E

Exponent: 8 bits Mantissa (Significand):  23 bits

fp32: Single-precision IEEE Floating Point Format Range: ~1e−38 to ~3e38

S E E E E E M M M M M M M M M M

Exponent: 5 bits Mantissa (Significand):  10 bits

fp16: Half-precision IEEE Floating Point Format Range: ~5.96e−8 to 65504

bfloat16: Brain Floating Point Format

S E E E E E E E E

Exponent: 8 bits Mantissa (Significand):  7 bits

M M M M M M M

Range: ~1e−38 to ~3e38

A brief guide to Floating Point Formats
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Bfloat16 as Good Codesign

Hardware: small mantissa reduces multiplier power, area
float32: 232=529
float16: 102=100
bfloat16: 72=49

Software: same dynamic range on number line, same Inf/NaN behavior as float

Numerics: Unlike IEEE fp16,  bfloat16 trains without loss scaling [Micikevicius 2017]

System: bfloat16 as an implementation technique inside the matrix multiplier. 
Can also expose it to save memory capacity and bandwidth, with more work
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Host Server

PCI v3 x 32
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● 180 teraflops of computation, 64 GB of HBM memory, 2400 GB/s mem. BW
● Designed to be connected together into larger configurations

Cloud TPU (v2), Generally Available
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Vector 
Unit

Scalar 
Unit

Matrix Unit (MXU) Matrix Unit (MXU)

8GB
HBM

8GB
HBM

Vector 
Unit

Scalar 
Unit

Cloud TPU chip layout
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Vector 
Unit

Scalar 
Unit

Matrix Unit (MXU) Matrix Unit (MXU)

8GB
HBM

8GB
HBM

Vector 
Unit

Scalar 
Unit

Cloud TPU chip layout 22.5 TFLOPS per core

● 2 cores per chip
● 4 chips per 180 TFLOP 

Cloud TPU
● Scalar Unit
● Vector Unit
● Matrix Unit
● Mostly float32
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Vector 
Unit

Scalar 
Unit

Matrix Unit (MXU) Matrix Unit (MXU)

8GB
HBM

Vector 
Unit

Scalar 
Unit

Cloud TPU chip layout

Matrix Unit (MXU)

● 128 x 128 systolic 
array

● bfloat16 multiplies
● float32 accumulate

8GB
HBM
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[Full bleed Pod photo]

Cloud TPU v2 Pod
51



TPU v3 Pod: Revealed at Google I/O May 2017 
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Relentless progress
92 teraops
Inference only

180 teraflops
64 GB HBM
Training and inference
Generally available (GA)

TPU v1
(deployed 2015)

Cloud TPUv2

Cloud TPUv3

420 teraflops
128 GB HBM
Training and inference
Beta

g.co/cloudtpu
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Relentless progress

Cloud TPU Pod (v2, 2017)

11.5 petaflops
4 TB HBM
2-D toroidal mesh network
Training and inference
Alpha

TPU v3 Pod (2018)

> 100 petaflops!
32 TB HBM
Liquid cooled
New chip architecture + larger-scale system

g.co/cloudtpu
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Confidential + Proprietary

ResNet-50 Speedup

Ying, C., Kumar, S., Chen, D., Wang, T. and Cheng, Y., 2018. Image Classification at Supercomputer 
Scale. arXiv preprint arXiv:1811.06992.
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Focus on real-world data, time-to-accuracy, and cost

● Measure performance with real input data, not just synthetic

● Ensure that models converge to expected accuracy while achieving high 

performance

● Measure total cost via public clouds

Make ML benchmarks reproducible via open-source implementations

ML performance, carefully measured
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JUST LAUNCHED!

[mlperf.org]

A broad ML benchmark suite for measuring performance of 
ML frameworks, ML hardware accelerators, and ML cloud 

platforms

Researchers from Harvard, Stanford, University of California, Berkeley, 

University of Illinois, University of Minnesota,  University of Texas, and University of Toronto
Supporting companies:

Alibaba, AMD, Arm, Baidu, Cadence, Cerebras, Cisco, Cray, Dividiti, Enflame Tech, Esperanto, 
Facebook, Google, Groq, Huawei, Intel, MediaTek, Mentor Graphics, Microsoft, Myrtle, Mythic, 

NetApp, NVIDIA, One Convergence, Qualcomm, Rpa2ai, Sambanova, Samsung S.LSI, Sigopt, 
Synopsys, Tensyr, Teradyne, Wave Computing, WekaIO 
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MLPerf (mlperf.org) in One Slide

Goal: Build “SPEC for Machine Learning”. 

Consortium of companies and universities.

Philosophy:
● Agile development because ML is changing rapidly. 
● Serve both the commercial and research communities.
● Enforce replicability to ensure reliable results.
● Use representative workloads, reflecting production use-cases.
● Keep benchmarking effort affordable (so all can play).

v0.5 Published December 2019
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MLPerf 0.5 Training Results

https:/mlperf.org/results/ has the raw data and detailed submission information.

Of the 7 benchmarks:
● NVIDIA submitted 6/7 V100-based results
● Google submitted 3/7 TPUv2 and TPUv3 results
● Intel submitted 1/7 SkyLake (CPU) results

Some observations:
● What do the submissions say about generality and software maturity?
● For similar numbers of chips, V100 and TPUv3 look comparable.
● Both NVIDIA and Google showed huge scale (640- and 260-chip entries)

Next deadline May 2019 MLPerf 0.6
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Some open codesign questions in Machine Learning

● What’s the “best” architecture? 
○ Will the market be the final arbiter? 
○ At the end of Moore’s Law, perhaps architectural efficiency matters more

● Software may matter more than hardware:
○ MultiFlow’s Compiler as most important artifact. 
○ Ease of use takes time: typically a decade for compilers to mature. 

● What’s the lower limit on numerics?
● How much more is sparsity going to matter? 

○ Embeddings, attention, compute and memory savings. What else? Brains are sparse. 

● When does batch=1 matter? Definitely for inference. For training?
○ Shallue, C.J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R. and Dahl, G.E., 2018. Measuring the 

effects of data parallelism on neural network training. arXiv preprint arXiv:1811.03600.
● How can we use more weights, but touch fewer of them? Mixture of Experts. 
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ML Crisis as both Danger and Opportunity

Danger: the end of Moore’s Law, Dennard Scaling, and standard CPU performance 
● Limits of CMOS in sight
● Intel 10nm woes, Global Foundries 7nm exit

Opportunity: the revolution in ML 
● Economic demand for ML accelerators 
● Architectural and codesign experimentation and transformation 
● Can we use ML to design better accelerators?

Irony: exponential demand for ML computation, just at the end of Moore’s Law
● Efficiency is going to matter a lot
● Huge opportunities for HW/SW codesign in building TPUs and other DSAs
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A New Golden Age

Hennessy and Patterson, 
“A New Golden Age for Computer 
Architecture,” 
Communications of the ACM, 
February 2019
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Questions?

*4/5/17 Google published a blog on the TPU. A 17-page technical paper with same title 
will be on arXiv.org. (Paper will also appear at the International Symposium on Computer 
Architecture on June 26, 2017.)
https://cloudplatform.googleblog.com/2017/04/quantifying-the-performance-of-the-TPU-our-first-machine-learning-chip.html
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My Story: Accidental Berkeley CS Professor*
● 1st college graduate in family; no CS/grad school plan

● Wrestler, Math major in high school and college
● Accidental CS Undergrad
● Accidental PhD Student

● New UCLA PhD (Jean-Loup Baer) took pity on me as undergrad
● Wife + 2 sons in Married Students Housing on 20 hour/week RAship

● Lost RA-ship after ≈4 years because grant ended 
● Part time at nearby Hughes Aircraft Company ≈3 more years (7.5 years to PhD)

● Accidental Berkeley Professor
● Wife forced me to call UC Berkeley CS Chair to check on application

● 1st project as Assistant Prof with an Associate Prof too ambitious & no resources
● Took leave of absence at Boston computer company to rethink career; 3rd year Ass’t Prof

● Tenure not easy (Conference papers vs. journal papers, RISC too recent)* Full video:  see “Closing Remarks”, www2.eecs.berkeley.edu/patterson2016



What Worked Well for Me*
● Maximize Personal Happiness vs. Personal Wealth
● Family First!
● Passion & Courage

● Swing for the fences vs. Bunt for singles
● “Friends may come and go, but enemies accumulate”
● Winning as Team vs. Winning as Individual

● “No losers on a winning team, no winners on a losing team”
● Seek Out Honest Feedback & Learn From It

● Guaranteed Danger Sign: “I’m smartest person in the room”
● One (Big) Thing at a Time

● “It’s not how many projects you start; It’s how many you finish”
● Natural Born Optimist

* Full video:  see “Closing Remarks”, www2.eecs.berkeley.edu/patterson2016



9 Magic Words for a Long Relationship

“I Was Wrong.”

“You Were Right.

“I Love You.”
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