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Based on Two Talks

In-Data Center Performance Analysis of a Tensor Processing Unit
ISCA 2017, Jouppi, Young, Patil, Patterson, et al.

(TPUv1, for inference)

Codesign in Google TPUs, by Cliff Young, HotChips 2017
(TPUv2 and later, for training and inference)



End of Growth of Performance?

40 years of Processor Performance
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What's Left?

Since

. Transistors not getting much better

. Power budget not getting much higher

. Already switched from 1 inefficient
processor/chip to N efficient processors/chip

Only path left is Domain Specific Architectures
. Just do a few tasks, but extremely well



What is Deep Learning?

e Loosely based on
(what little) we know
about the brain
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Slide from "Large-Scale Deep Learning with TensorFlow for Building Intelligent Systems," by Jeff Dean, ACM Webinar, 7/7/16



Key NN Concepts for Architects

e /raining or learning (development)
vs. Inference or prediction (production)
e Batch size
o Problem: DNNs have millions of weights that
take a long time to load from memory (DRAM)
o Solution: Large batch = Amortize weight-fetch time by
inferring (or training) many input examples at a time
e Floating-Point vs. Integer (“Quantization”)
o Training in Floating Point on GPUs popularized DNNs
o Inferring in Integers faster, lower energy, smaller



e 2013: Prepare for success-disaster of new DNN apps

® Scenario with users speaking to phones 3 minutes per day:
If only CPUs, need 2X-3X times whole fleet

® Unlike some hardware targets, DNNs applicable to a wide range of problems, so
can reuse for solutions in speech, vision, language, translation, search ranking, ...

® Custom hardware to reduce the TCO of DNN
inference phase by 10X vs. CPUs
® Must run existing apps developed for CPUs and GPUs

e Averyshort development cycle
e Started project 2014, running in datacenter 15 months later:
Architecture invention, compiler invention, hardware design, build, test, deploy

® Google CEO Sundar Pichai reveals Tensor Processing Unit
at Google I/0 on May 18, 2016 as “10X performance/Watt”

cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html




Tensor Processing Unit v1 (eployed 2015)

Google-designed chip for neural net inference

COMMUNICATIONS

A Domain-Specific
Architecture

for Deep Neural
Networks

In production use for =4 years: used by billions on
search queries, for neural machine translation,

for AlphaGo match, ... e i
Overtrust in the Robotic Age
A Domain-Specific Architecture for Deep Neural Networks, Jouppi, gc’rders in;he :loud
. . . mputer Architecture:
Young, Patil, & Patterson, Communications of the ACM, September Ditruption frotiAbovel

2018




e TPUv1 Card to replace a disk
e Upto 4 cards/server

TPUv1 Card & Package
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Inference Datacenter Workload (95%)

Layers POV 1y
Name |[LOC Nonlm.ear Weights Op,S/ Batch 70
function Weight S Deployed
FC |Conv|Vector|Pool| Total Byte 1ze
MLPO 0.1k 5 5 ReLU | 20M 200 200 61%
MLPI | 1k | 4 4 | ReLU | 5M | 168 | 168 ’
LSTMO| 1k | 24 34 sg | Siemold | oonr | 64 64
tanh
: 1 29%
LSTMI1/1.5k| 37 19 56 | VSN0 3aM | 96 96
tanh
CNNO | 1k 16 16 | ReLU SM 2888 8 50
CNNI1 | 1k| 4 | 72 13| 89 | ReLU |100M| 1750 32 °




. Add as accelerators to
existing servers

. So connect over I/O bus (“PCle”)
. TPUv1 = matrix accelerator on I/O bus

. Host server sends it instructions like a
Floating Point Unit

. Unlike GPU that fetches and executes own
instructions



The Matrix Unit: 65,536 (256x256)

8-bit multiply-accumulate units

700 MHz clock rate

Peak: 92T operations/second
o ©65536*2*700M
>25X as many MACs vs GPU

>T100X as many MACs vs CPU
4 MiB of on-chip Accumulator

memory

24 MiB of on-chip Unified Buffer,, 4.

(activation memory)

3.5X as much on-chip memory

vs GPU

o [wo 2133MHz DDR3 DRAM

channels

e 8 GiB of off-chip weight DRAM

memory

14 GiB/s
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TPUv1: a Neural

Network
Accelerator Chip

Unified Buffer Matrix Multiply Unit
for Local Activations (256x256x8b=64K MAC)
(96Kx256x8b = 24 MiB) 24%
29% of chip
Host Accumulators

Interf. 2% (4Kx256x32b = 4 MiB) 6%

: |
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5 main (CISC) instructions

Read Host Memory

Write Host Memory

Read Weights

MatrixMultiply/Convolve

Activate (ReLU, Sigmoid, Maxpool, LRN, ..)
Average Clock cycles per instruction: >10

4-stage overlapped execution, 1 instruction type / stage

® Execute other instructions while matrix multiplier busy
Complexity in SW: No branches, in-order issue,

SW controlled buffers, SW controlled pipeline synchronization



. Problem: energy/ time for
repeated SRAM accesses

of matrix multiply
. Solution: “Systolic Execution” to

compute data on the fly in
buffers by pipelining control and
data

e Relies on data from different directions
arriving at cells in an array at regular
intervals and being combined



Systolic Execution:
Control and Data are pipelined

-

—> Done

r




Can now ignore pipelining in matrix
Pretend each 256B input read at once, & they instantly
update 1 location of each of 256 accumulator RAMs.

Magic instant
adders™

Control




Processor

CPU: Haswell
(18 core)

GPU: Nvidia
K80 (2 / card)

TPUvV1

mm?

662

561

<331*

Clock
MHz

2300

560

700

P idle | Memory Peak TOPS/chip
Watts = Watts = GB/sec g, it | 30p Fp

145 41 91 2.6 1.3
150 25 160 -- 2.8
75 28 34 91.8 --

*TPUvV1 is less than half die size of the Intel Haswell processor

K80 and TPUv1 in 28 nm process; Haswell fabbed in Intel 22 nm process
These chips and platforms chosen for comparison because widely deployed in Google data centers



GPUs and TPUs added to

CPU server
Chips/ Observed
TDP Idle
Processor Server DRAM Watts = Watts .Busy Watts
in datacenter

CPU: Haswell (18 cores) 2 256 GB 504 159 455
NVIDIA K80 (13 cores) 256 GB

(2 die per card; 8 (host) + 1838 357 991

4 cards per server) 12GB x 8

TPUv1 (1 core) 256GB

(1 die per card; 4 (host) + 861 290 384

4 cards per server) 8GB x 4

These chips and platforms chosen for comparison because widely deployed in Google datacenters



2 Limits to performance:

1. Peak Computation

2. Peak Memory Bandwidth
(For apps with large data that
don’t fit in cache)

GFLOP/s = Min(Peak GFLOP/s, Peak GB/s x Al)
64.0

32.0

Arithmetic Intensity (FLOP/byte

~_Ppeak floating point perf.

or reuse) determines which limit §
Weight-reuse = Arithmetic |

Intensity for DNN roofline

: limited)

0.5

Yo YUy Y, 1 2 4 8 16

Samuel Williams, Andrew Waterman, and David Patterson. "Roofline: an insightful visual

. . L Arithmetic Intensity: FLOPs/Byte Ratio
performance model for multicore architectures."Communications of the ACM 52.4 (2009): 65-76.



TeraOps/sec (log scale)

TPUv1 Die Roofline

TPU Log-Log
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TeraOps/sec (log scale)

Haswell (CPU) Die Roofline
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TeraOps/sec (log scale)

3.1
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Why so far below Rooflines? (MLPO)

Type | Batch | 99th% Response | Inf/s (IPS) % Max IPS
CPU 16 7.2 ms 5,482 42%
CPU 64 21.3 ms 13,194 100%
GPU 16 6.7 ms 13,461 37%
GPU 64 8.3 ms 36,465 100%
TPUvI| 200 7.0 ms 225,000 80%
TPUv1| 250 10.0 ms 280,000 100%

24




TeraOps/sec (log scale)

Log Rooflines for CPU, GPU, TPUv1
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TeraOps/sec (llinear scale)
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Performance/Watt vs. CPU or GPU

Perf/Watt TPUv1 vs CPU & GPU

@ GPU/CPU B TPU/CPU W TPU/GPU

100

~80X incremental perf/W of Haswell CPU
~3%( incremental perf/W of K80 GPU

Total Incremental
Performance/Watt Performance/Watt
(including host CPU) (no host CPU)

27



. Current DRAM
. 2DDR3 2133 = 34 GB/s

. Replace with GDDRS5 like in

K80 = 180 GB/s
. Move Ridge Point from
1400 to 256



Revised TPUv1 Raises Roofline

= Roofline

Improves performance 4X for = Roofline
LSTM1, LSTMO, MLP1, MLPO * LSTMO
1 * LSTMO
*
LSTM1
@ LSTM1
5
g * MLP1
g * MLP1
% * MLPO
T
: * MLPO
* CNNO
* CNNI1

Weight Reuse (log scale)
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Perf/Watt Original & Revised TPUv1

@ GPU/CPU B TPU/CPU B TPU/GPU B TPU/CPU TPU/GPU

~200X incremental perf/W of Haswell CPU
~70X incremental perf/W of K80 GPU

150
100
50
0
Total Performance/Watt Incremental Performance/Watt
(including host CPU) (no host CPU)

30



Related Work

Two survey articles document that custom NN ASICs go back at least 25 years [len96)[Asa02]. For example,
CNAPS chips contained a 64 SIMD array of 16+bit by 8-bit multipliers, and several CNAPS chips could be
connected together with a sequencer [Ham90]. The Synapse=1 system was based on 3 custom systolic
multiply=sccumulate chip called the MA=16, which performed sixteen 16+bet multiplies at a time [Ram91]. The
system concatenated several MA«16 chips together and had custom hardware to do activation functions.

T five SPERT-11 by the TO custom ASIC, were deployed starting i 1995 to do
both NN traning and inference for speech recognatson [Asx98]. The 40-Mhz T0 added vector instructsons to the
MIPS instructson set archatecture. The eight-lane vector umit could produce up to sixteen 32-bit anthmetic results per
clock cycle based on 8«bit and 16+bat mputs, making 1t 25 times faster at inference and 20 times faster at traning
than a SPARC-20 workstatson. They found that 16 bits were insufficient for training, so they used two 16+bit words
instead, which doubled training time. To overcome thet drawback, they introduced “bunches™ (batches) of 32 to
1000 data sets to reduce time spent updating weights, which made it faster than training with one word but no
batches.

The mare recent DianNao family of NN architectures mmsmizes memory accesses both on the chip and to
external DRAM by having efficsent archstectural support for the memory access patterns that appear in NN
applications [Keul6] [Chel6a). All use 16<bat integer operations and all designs dove down to layout, but no chaps
were fabricated. The original DianNao uses an array of 64 16<bit integer multiply-sccumulste unsts with 44 KB of
onechip memoey and is estimated 10 be 3 mm’ (65 nm), 1o run at 1 GHz, and to consume 0.5W [Chel4a]. Most of
this energy went 1o DRAM accesses for weights, so one successor DaDznNaso (“big computer™) includes eDRAM
10 keep 36 MiB of weights on chip [Chel4b). The goal was to have enough memory in 3 multichip system 0 avoid
external DRAM accesses. The followson PuDmnNao (“general computer™) s aimed at more traditional machine
learning algorsthms beyond DNNs, such as suppoet vector machines [Liul5]. Another offshoot i ShiDianNao
(“vision computer”) asmed at CNNs, whach avosds DRAM accesses by connecting the accelerator directly 1o the
sensoc [Dul §)

Thl:c«nlmmmngm is also focused an CNNs for image processing [Qud]3). This design deploys 64 10-bit

il units and a Tensilica processor estimated to run at 800 MHz in 45 nm. It is
pmy:d:d'nbe!\b 15X more energyearea efficient than an SIMD processor, and withan 2X 10 3X of custom
ardware designed just for 3 specifc kenel.

The Fathom paper ly reports results 1o ours, with the GPU running inference
much faster than the CPU [Adol6). l(m,l!:nCPU-ﬂ(‘PUnnﬂmn-cl-ghCPUhasollv four cores,
the applications do not use the CPU’s AVX mstructions, and there is no responsestime cutofT (see Table 4) [Brol6].

Catapult 15 the most widely deployed example of reconfigurability to support DNNs, which many have
proposed [Far09][Chal0][Far11][Peel3][Cav15][Zhal5). They chose FPGAS over GPUs to reduce power as well as
the risk that latency=sensitive applications wouldn't map well 1o GPUS, FPGAS can also be re-purposed, such as for
search, compression, and network interface cards [Put15]. The TPU project actually began with FPGAS, but we
abandoned them when we saw that the FPGAs of that time were not competitive i performance compared to the
GPUs of thet time, and the TPU could be much lower power than GPUs while being as fast or faster, giving it
potentially significant benefits over both of FPGAs and GPUs.

Although first published in 2014 [Put14], Catapult is  TPU contem, since it deployed 28.nm Stratix V
FPGAs into datacenters concurrently with the TPU in 2015, Catapult has a 200 MHz clock, 3,926 18+bit MACs, 5
MiB of onechip memory, 11 GB/s memory bandwidth, and uses 25 Watts. The TPU has a 700 MHz clock, 65,536
Sebat MACs, 28 MiB, 34 GB/s, and typically uses 40 Watts. A revised version of Catapult uses newer FPGAs and
was deployed at larger scale m 2016 [Cau 16).

Catapult V1 runs CNNs—using a systolic matrix multiplier—2.3X as st as a 2.1 GHz, 16-core, dual-socket
server [Ovt13a]. Using the next generation of FPGAS (14«nm Arria 10) of Catspult V2, performance might g0 up to
7X, and perhaps even 17X with more careful flooeplanning [OvtlSb]. Although it's apples versus oranges, a current
TPU die runs sts CNNs 40X to 70X versus a somewhat faster server (Tables 2 and 6). Perhaps the biggest difference
s that to get the best e the user must write long programs in the lowslevel hardware-design-langusge
Verilog [Met16][Putl 6] versus writing shoet programs using the highslevel TersorFlow framework, That is,
reprogrammability comes from software for the TPU rather than from firmware for the FPGA.

Recent research, which appeared afler the TPU was deployed, accel DNNs by the cases when
weights and data are very small or zero. Our tight schedule precluded such optimizations in the TPU, but we saw the
same opportunaty in our studies. The Efficsent Inference Engine 1s based on a first pass that reduces the number of
weights by sbout a factor of 10 [Hanl 5] as a separate step by filtering out very small values and then uses Huffman
encoding to shrink the dsta even further 1o improve inference performance [Han16). Crvlutin [Alb16] avoids

when an input vhach it is 44% of the time, presumably m part due to ReL.U
nonlinear function that transforms negative values 10 zero—to improve performance by an average 1.4 imes.

Eyeriss is a novel, lowspower dataflow that takes advantage of zeros by runelength encoding data to
reduce the memory footpemt and saves power by avoiding computations when an input =5 zero [Chel6a). Using

terminology, 3 TPU convolutonal Layer maps C and M to the rows and columns of the matrix unat, taking
HWN cycles 1o perform one pass. With high C/M,  takes RS passes to process the kxyer; for low C/M, a number of
technigues reduce passes and improve utilization. (More can be found in the online references
[Ros1Sa][Ros! 5b][Res15c][Ros 1 SA)[Thol S][Youl 5]).

Minerva is a co-design system crosses and carcuit 1o reduce power by
8X in part by pruning activation data with small values and in part by quantizing the data [Real 6], [Gup15] looks at
16-bit fixed=pomt anthmetic for trasming instead of for inference. Others leverage the lower precsion of DNN
calculatsons by utilzing analog carcuits during the computation to mmprove energy and performance [LiK16]
[Shal6}. By tasloring an instruction set to DNNs, Cambricon reduces code swze [Laul6]. Recent work looked at

e s Sevhitartianas Evr N 105 1 LMY il &Y

Related Work

Comparing the TPU to some of these architectures:
e [Chel4a] DMAs data from DRAM to input and weight buffers. They are read by the 3-stage pipelined NFU
that performs iplies, adds, and 1is ions; the results go to the output buffer, and then to
DRAM. The NFU has no storage and isn’t sysloh&
®  [GuplS] appears to stream both matrix inputs while storing partial sums in the systolic array; the TPU
stores the weight matrix tile while streaming the other input and the pre-activation partial sums. The TPU
doesn’t support stochastic rounding.
®  [Zhal$] is built out of computation units equivalent to a 4x2 version of the TPU matrix unit. In an ASIC,
the wiring cost of the ¢rossbars that connect input and output buffers to these compute engines would be
significant. We are surprised that we didn’t see architectural support for additional reductions to combine
results from compute engines in [Zhal$).
All three of [Gupl5][Chel4a](Zhal$] store activations in DRAM during computation; the TPU’s Unified Buffer is
sized so that no DRAM spilling or reloading happens during normal operation.
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TPUv1 succeeded because of

. Large matrix multiply unit

. Substantial software-controlled on-chip memory

. Run whole inference models to reduce host CPU

. Single-threaded, deterministic execution model
good match to 99th-percentile response time

. Enough flexibility to match NNs of 2017 vs. 2013

. Omission of GP features = small, low power die

. Use of 8-bit integers in the quantized apps

. Apps in TensorFlow, so easy to port at speed



Inference prefers latency over throughput

K80 GPU relatively poor at inference (vs. training)
Small redesign improves TPUv1 at low cost
15-month design & live on 1/0O bus yet TPUv1 15X-
30X faster Haswell CPU, K80 GPU (inference),

<V die size, 5 Watts

« 65,536 (8-bit) TPUv1l MACs cheaper, lower energy, &
faster 576 (32-bit) CPU MACs, 2496 GPU (32-bit) MACs

10X difference in computer products are rare



Two Talks

Codesign in Google TPUs
(TPUv2 and later, for training and inference)



Observation: Training >> Inference

3x the computation: forward propagation, backward propagation, and weight update.
Much longer data storage lifetimes: memory capacity and bandwidth.

Huge training datasets for training, versus scale-out to serve inference.

Changes to algorithms and model structure require more flexibility.

Many more potential Amdahl's Law bottlenecks.
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Exponential Growth in Deep Learning
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AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

e AlphaGo Zero
e AlphaZero

©Neural Machiine Translation
e Neural Architecture Search

« Xception ®T17 Dota v1

VGG eDeepSpeech2
«Sea25eq eResNets
e GoogleNet
o AlexNet #Visualizing and Understanding Conv Nets
eDropout
*DQN
2013 2014 2015 2016 2017 2018 2019

Year

FLOPs to train a model

~3.5 months
(~10X per year)

Why all this growth? Because Deep Learning works.

Google
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Classic Codesign at the HW/SW Interface

Definition: design spanning two fields for a common goal.
e (lassic version is between architecture and compiler.

Instruction Set Architecture (ISA) as interface/contract between levels.

Example of pushing things back and forth: instruction scheduling.
e VLIW (static scheduling)
e 000 (dynamic scheduling)
e Answer today=both.

Ultimately ISA is a single thin layer between the hardware and software domains.
Google
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Codesign for Domain-Specific Architectures

Physics

(conceptual, not rigorous diagram)

Now, there are many different layers, with many different interfaces.

TPUs are still digital (for now).
e Some startups are pushing into physics (NVRAM, Flash, optical).
e Need to do codesign from physics to application: hard!

Google
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Fallacy: TPUs are ASICs, so they are not Programmable

ASIC: Application-Specific Integrated Circuit
Means only “build whatever you want into the chip.”
ASICs include general-purpose cores, SoCs, and fixed-function designs.

TPUs are Domain-Specific Architectures (DSAs) for Machine Learning.
We designed them to meet our current and future needs.
They include the flexibility to handle future models.
Choosing the right amount of flexibility is central to our codesign process.

For the technically nitpicky:
TPUV1 is a coprocessor, controlled by the host.
TPUv2 and successors are Turing-complete.

TPUs power both Google research and Google production applications.

Google 39



Training: DNN Supercomputer or Cluster of CPUs with DNN
Accelerators”?

e Single-chip system—built as coprocessor to a CPU like TPUv1—would work fine for

inference and standard cluster networks
o AlphaGo used cluster of 64 TPUv1 chips

e \Went instead with large supercomputer because
o Training takes weeks to months on single chip for our production training runs
o Deep neural network wisdom was bigger datasets + bigger machines led to breakthroughs

e Build a NN supercomputer (TPU v2/v3) vs build a NN coprocessor chip (TPU v1)

Google Confidential + Proprietary 40



Codesign: Datacenter-scale Supercomputer

Three ways to spend on computer architectural resources:
e Compute
e Memory
e Interconnect

Cloud TPUs were designed from the beginning to be networked.
e Data parallelism through increased batch size scales seamlessly today.
e Model parallelism is underway.

Google
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ML Quality = Correctness: Fast but Incorrect Uninteresting

e 1% quality loss to ML practitioners can be like getting wrong answer
o Aiming for intelligent app for a billion people, so lower quality can mean
worse experience for millions of people / loss of income
e For datacenter production apps, training has to be in floating point
o Researchers exploring fixed point for training but at cost in quality
o Production remains floating point (but FP32 sufficient, no need for FP64)

GOOgle Confidential + Proprietary 49



Codesign: Reduced-precision numerics

Neural-network researchers showed that inference did not need float32 precision.

Vanhoucke, V., Senior, A. and Mao, M.Z., 2011, December. Improving the speed of neural networks on CPUs.
In Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop (Vol. 1, p. 4).

TPUv1 deployed with int8 hardware and support for int16 through software.
int16 intended as “insurance”; used mostly in LSTM-based models.

Training has traditionally been done in floating point.

Q: Does training require full float32 resolution?
A: Not everywhere. But where matters.

Google
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A brief guide to Floating Point Formats

fp32: Single-precision IEEE Floating Point Format

Exponent: 8 bits Mantissa (Significand): 23 bits

Range:

EEEEEEEEMMMMMMMMMMMMMMMMM

fp16: Half-precision IEEE Floating Point Format

Exponent: 5 bits Mantissa (Significand): 10 bits

EEEEEMMMMMMMMMM

bfloat16: Brain Floating Point Format

Exponent: 8 bits Mantissa (Significand): 7 bits
E E E E E E E E M M M M M M M

Google

Range:

Range:

~1e 38 to ~3e38

M M M M M M

~5.96e8 to 65504

~1e 38 to ~3e38
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fp32: Single-precision IEEE Floating Point Format
Exponent 8

Mantissa (Significand): 23 bits

Bfloat16 as Good Codesian R ———
S
- EEE T
bfloat16: Brain Floating Point Format to
onent: 8 bits. Mantissa (Significand). 7 bits.
eeeeeeee BT srole

Hardware: small mantissa reduces multiplier power, area
float32: 232=529
float16: 102=100
bfloat16: 72=49

Software: same dynamic range on number line, same Inf/NaN behavior as float
Numerics: Unlike IEEE fp16, bfloat16 trains without loss scaling [Micikevicius 2017]

System: bfloat16 as an implementation technique inside the matrix multiplier.
Can also expose it to save memory capacity and bandwidth, with more work
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Host Server

Google

PClv3x32
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Cloud TPU (v2), Generally Available
| N I | RV

180 teraflops of computation, 64 GB of HBM memory, 2400 GB/s mem. BW
Designed to be connected together into larger configurations

47



Cloud TPU chip layout

Matrix Unit (MXU)

Google

Matrix Unit (MXU)
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Cloud TPU chip layout 22.5 TFLOPS per core

@ 4 chips per 180 TFLOP
Cloud TPU
ittt S @® Scalar Unit
® Vector Unit
@® Matrix Unit
@® Mostly float32

@® 2 cores per chip

Google 49




Cloud TPU chip layout

Matrix Unit (MXU)

Google

Matrix Unit (MXU)

@ 128 x 128 systolic
array

@® bfloat16 multiplies

® float32 accumulate
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Relentless progress g.co/cloudtpu

TPU v1
(deployed 2015)

92 teraops
Inference only

180 teraflops

64 GB HBM

Training and inference
Generally available (GA)

Cloud TPUv2

420 teraflops

128 GB HBM

Training and inference
Beta

Cloud TPUv3

Google 53



Relentless progress

=N

TPU v3 Pod (2018)
Google

g.co/cloudtpu

11.5 petaflops

4 TB HBM

2-D toroidal mesh network
Training and inference
Alpha

> 100 petaflops!

32 TB HBM

Liquid cooled

New chip architecture + larger-scale system
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ResNet-50 Speedup

= TPUv2 = TPUv3
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Ying, C., Kumar, S., Chen, D., Wang, T. and Cheng, Y., 2018. Image Classification at Supercomputer

Scale. arXiv preprint arXiv:1811.06992.
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ML performance, carefully measured

Focus on real-world data, time-to-accuracy, and cost
e Measure performance with real input data, not just synthetic
e Ensure that models converge to expected accuracy while achieving high

performance

e Measure total cost via public clouds

Make ML benchmarks reproducible via open-source implementations

Google
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4

MLPerf
[mlperf.org]

A broad ML benchmark suite for measuring performance of
ML frameworks, ML hardware accelerators, and ML cloud
platforms

Researchers from Harvard, Stanford, University of California, Berkeley,

University of lllinois, University of Minnesota, University of Texas, and University of Toronto

Supporting companies:
Alibaba, AMD, Arm, Baidu, Cadence, Cerebras, Cisco, Cray, Dividiti, Enflame Tech, Esperanto,

Facebook, Google, Groq, Huawei, Intel, MediaTek, Mentor Graphics, Microsoft, Myrtle, Mythic,

NetApp, NVIDIA, One Convergence, Qualcomm, Rpa2ai, Sambanova, Samsung S.LSI, Sigopt,

Google Synopsys, Tensyr, Teradyne, Wave Computing, WekalO

o/



MLPerf (mlperf.org) in One Slide

Goal: Build “SPEC for Machine Learning”.
Consortium of companies and universities.

Philosophy:

e Agile development because ML is changing rapidly.
Serve both the commercial and research communities.
Enforce replicability to ensure reliable results.

Keep benchmarking effort affordable (so all can play).

v0.5 Published December 2019
Google

Use representative workloads, reflecting production use-cases.
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MLPerf 0.5 Training Results

https:/mlperf.org/results/ has the raw data and detailed submission information.

Of the 7 benchmarks:
e NVIDIA submitted 6/7 V100-based results
e (Google submitted 3/7 TPUvZ and TPUv3 results
e Intel submitted 1/7 SkyLake (CPU) results

Some observations:
e What do the submissions say about generality and software maturity?
e For similar numbers of chips, V100 and TPUv3 look comparable.
e Both NVIDIA and Google showed huge scale (640- and 260-chip entries)

Next deadline May 2019 MLPerf 0.6
Google
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Some open codesign questions in Machine Learning

e What's the "best” architecture?
o  Will the market be the final arbiter?
o Atthe end of Moore's Law, perhaps architectural efficiency matters more
e Software may matter more than hardware:
o MultiFlow's Compiler as most important artifact.
o Ease of use takes time: typically a decade for compilers to mature.
What's the lower limit on numerics?

How much more is sparsity going to matter?
o Embeddings, attention, compute and memory savings. What else? Brains are sparse.
e \When does batch=1 matter? Definitely for inference. For training?
o Shallue, C.J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R. and Dahl, G.E., 2018. Measuring the
effects of data parallelism on neural network training. arXiv preprint arxiv:1811.03600.

e How can we use more weights, but touch fewer of them? Mixture of Experts.
Google 60



The effects of data parallelism on neural network training

2" r v . vy 2% e
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(a) Simple CNN on MNIST (b) Transformer on LM1B (c) et-50 on ImageNet

Perfect scaling region Diminishing returns Maximal data parallelism

Measuring the Effects of Data Parallelism on Neural Network Training, Christopher J. Shallue,
Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, George E. Dahl,
arxiv.org/abs/1811.03600
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ML Crisis as both Danger and Opportunity

Danger: the end of Moore's Law, Dennard Scaling, and standard CPU performance
e Limits of CMQOS in sight
e Intel TOnm woes, Global Foundries 7nm exit

Opportunity: the revolution in ML
e FEconomic demand for ML accelerators
e Architectural and codesign experimentation and transformation
e (Can we use ML to design better accelerators?

Irony: exponential demand for ML computation, just at the end of Moore's Law
e Efficiency is going to matter a lot
e Huge opportunities for HW/SW codesign in building TPUs and other DSAs
Google
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A New Golden Age

Hennessy and Patterson,

‘A New Golden Age for Computer
Architecture,”

Communications of the ACM,
February 2019

Google

( qmputing Perspective

COMMUNICATIONS
“ACM

A New Golden Age for
Computer Architecture
Agriculture Technology

Monitoring Noise Pollution

The Computational Sprinting Game
Blockchain from a Distributed
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Questions?

*4/5/17 Google published a blog on the TPU. A 17-page technical paper with same title
will be on arXiv.org. (Paper will also appear at the International Symposium on Computer

Architecture on June 26, 2017.)

https://cloudplatform.googleblog.com/2017/04/quantifying-the-performance-of-the-TPU-our-first-machine-learning-chip.html
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My Story: Accidental Berkeley CS Professor*

1t college graduate in family; no CS/grad school plan
e Wrestler, Math major in high school and college
Accidental CS Undergrad

Accidental PhD Student
e New UCLA PhD (Jean-Loup Baer) took pity on me as undergrad

Wife + 2 sons in Married Students Housing on 20 hour/week RAship
e Lost RA-ship after =4 years because grant ended
e Part time at nearby Hughes Aircraft Company =3 more years (7.5 years to PhD)

Accidental Berkeley Professor
e Wife forced me to call UC Berkeley CS Chair to check on application

15t project as Assistant Prof with an Associate Prof too ambitious & no resources
e Took leave of absence at Boston computer company to rethink career; 3'd year Ass'’t Prof
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What Worked Well for Me*

Maximize Personal Happiness vs. Personal Wealth
Family First!
Passion & Courage

e Swing for the fences vs. Bunt for singles

“Friends may come and go, but enemies accumulate”
Winning as Team vs. Winning as Individual
e “No losers on a winning team, no winners on a losing team”

Seek Out Honest Feedback & Learn From It
e Guaranteed Danger Sign: “’'m smartest person in the room”

One (Big) Thing at a Time
“It's not how many projects you start; It’'s how many you finish”
Natural Born Optimist

* Full video: see “Closing Remarks”, www2.eecs.berkeley.edu/patterson2016



9 Magic Words for a Long Relationship

“I Was Wrong.”

“You Were Right.

“I Love You.”



