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Problem 1: Vectors (20 points) 
 

Problem 1.A (12 points) 

 

State whether each of the following loops can be successfully vectorized and explain your 

reasoning.  If it can only be vectorized under certain circumstances, give requirements on the 

inputs and any other necessary conditions. 

In all cases, assume that A, B, and C are non-overlapping arrays in memory. 

 

x = 0; 

for (i = 0; i < N; i++) { 

 x = x + (B[i] * A[i]); 

} 

 

 

 

 

 

 

 

For simplicity, assume N is evenly divisible by 3. 

for (i = 0; i < N; i++) { 

 A[i] = B[i % (N/3)]; 

} 

 

 

 

 

 

 

 



 

 

for (i = 0; i < N; i++) { 

 if (B[i] == 0) { 

  if (A[i] != 0) 

   C[i] = A[i]; 

 } else { 

  C[i] = B[i]; 

 } 

} 

 

 

 

 

 

 

 

 

 

 

 

for (i = 0; i < N; i++) { 

 C[B[i]] = C[A[i]]; 

} 

 

 

 



 

 

Problem 1.B (8 points) 

 
Write vector assembly code for the following loop.  Use either the RISC-V vector ISA described 

in lecture and Lab 4 or comparable vector pseudocode.  Refer to Appendix A for an abbreviated 

RISC-V vector instruction listing. 

• Arrays A and B contain 64-bit integers and do not overlap. 

• N is passed in register a0. 

• The base addresses of arrays A and B are passed in registers a1 and a2, respectively. 

for (i = 0; i < N; i++) { 

 A[3*i+2] = A[3*i] + (A[3*i+1] * B[i]); 

} 

 

Label Instruction Comment (optional) 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 



Problem 2: VLIW (20 points) 
 

In this problem, we will optimize the following code sequence, which implements a scan 

operation, for a VLIW architecture. 

for (i = 0; i < N; i++) { 
    x = (A[i] * B[i]) + x; 
    C[i] = x; 
} 

# f1 contains initial value of x 
addi x1, x0, N*8         # initialize loop boundary 
addi x2, x0, 0           # initialize array pointer 

loop: 
fld f2, A(x2)            # load A[i] 
fld f3, B(x2)            # load B[i] 
addi x2, x2, 8           # bump pointer 
fmul.d f4, f2, f3        # compute product 
fadd.d f1, f1, f4        # compute x 
fsd f1, (C-8)(x2)        # store C[i] 
bltu x2, x1, loop 

 

• “A”, “B”, and “C” are immediates generated by the compiler that encode the base 

addresses of arrays A, B, and C, respectively. 

• Arrays A, B, and C do not overlap in memory. 

• N is a large number that is statically known. 

• N is evenly divisible as needed for loop unrolling and software pipelining. 

• Register f1 holds the initial value of x. 

• Assume that no exceptions arise during execution. 

The code is executed on an in-order VLIW machine with five execution units.  All execution 

units are fully pipelined and latch their operands at issue. 

 

• One integer ALU, 1-cycle latency, also used for branches 

• Two memory units, 2-cycle latency, both of which can perform either a load or store 

 (ignore the latency of memory-memory dependencies for this problem) 

• One floating-point adder, 3-cycle latency 

• One floating-point multiplier, 3-cycle latency 

Instructions are statically scheduled with no interlocks; all latencies are exposed in the 

ISA.  All register operands are read before any writes from the same instruction take effect (i.e., 

no WAR hazards between operations within a single VLIW instruction). 

 



Execution units write to the register file at the end of their last pipeline stage, and the results become visible at the beginning of the 

following cycle.  There is no bypassing.  Old values can be read from registers until they have been overwritten.  (You may 

leverage this to more efficiently schedule VLIW code.) 

 

The unoptimized scheduling of the above assembly code is shown in the following table. 

Label ALU MEM0 MEM1 FADD   FMUL 

 addi x1, x0, N*8     

 addi x2, x0, 0     

loop: addi x2, x2, 8 fld f2, A(x2) fld f3, B(x2)   

      

     fmul.d f4, f2, f3 

      

      

    fadd.d f1, f1, f4  

      

      

 bltu x2, x1, loop  fsd f1,(C-8)(x2)   

      

      

      

      

      

 



Problem 2.A: Loop Unrolling (8 points) 

 

Write the assembly code for unrolling the loop once, so that two iterations of the original code 

are processed in one unrolled iteration. 

Label Instruction Comment (optional) 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 



Schedule operations with VLIW instructions using only loop unrolling (no software pipelining).  Try to optimize for efficiency and 

minimize the number of cycles, but prioritize correctness.  Entries for NOPs can be left blank. 

Label ALU MEM0 MEM1 FADD   FMUL 

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      



Problem 2.B: Software Pipelining (10 points) 

 

Schedule operations with VLIW instructions using only software pipelining (no loop unrolling).  Include the prologue and epilogue to 

initiate and drain the software pipeline.  Try to optimize for efficiency and minimize the number of cycles, but prioritize correctness. 

If possible, use different colors to distinguish between instructions from different iterations.  Entries for NOPs can be left blank. 

Label ALU MEM0 MEM1 FADD   FMUL 

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      



Problem 2.C: Loop Unrolling Performance (1 point) 

 

What is the throughput of the unrolled loop (Part 2.A) in floating-point operations per cycle 

(FLOPS/cycle)?  Only consider the steady-state behavior of the loop.  Do not count memory 

operations. 

 

 

 

 

 

 

 

 

Problem 2.D: Software Pipelining Performance (1 point) 

 

What is the throughput of the software-pipelined loop (Part 2.B) in floating-point operations per 

cycle (FLOPS/cycle)?  Only consider the steady-state behavior of the loop.  Do not count 

memory operations. 

 

 



Problem 3: Multithreading (20 points) 
 

Consider the following code, which performs an in-place slide operation that moves non-zero 

elements forward in array A by a displacement M.  To parallelize the loop on a multithreaded 

processor, suppose that we split the loop so that each thread executes every iteration for which 

(i % T) == TID,  where T is the total number of threads and TID is a thread identifer from 0 

to T-1 inclusive that is uniquely assigned to each thread. 

for (i = 0; i < N; i++) { 
    if (A[i+M] != 0) 
        A[i] = A[i+M]; 
} 

 

N and M are arbitrary integers, and N > M and N > T. 

The code is executed on a multithreaded in-order core with no data cache, perfect branch 

prediction with no penalty for both taken and not-taken branches, and no threading overhead. 

• Main memory latency is 40 cycles. 

• After the processor issues a load, it can continue executing instructions until it reaches an 

instruction that is dependent on the load value. 

• Integer arithmetic operations have a 1-cycle latency. 

 

Problem 3.A (5 points) 

 

For the loop to be safely parallelized this way, what constraint(s) must there be on T, the number 

of threads?  Explain your reasoning. 

Assume there is no synchronization among threads while executing the loop. 

 

 



Problem 3.B (5 points) 

 
Write the assembly code that is executed by each thread.  Treat the elements of A as 32-bit 

integers.  You may use any available register, such as t1-t6. 

# A is passed in a0 
# M is passed in a1 
# T is passed in a2 
# TID is passed in a3 
addi t0, a0, N*4    # Initialize loop boundary (t0 = A + N) 
slli a1, a1, 2      # Scale M to bytes 
slli a2, a2, 2      # Scale T to bytes 
slli a3, a3, 2      # Scale TID to bytes 
add a0, a0, a3      # Offset pointer by thread ID 

loop: 
 

 



Problem 3.C (5 points) 
 

Suppose that threads are switched every cycle using a fixed round-robin schedule.  If the thread 

is not ready to run on its turn, a bubble is inserted into the pipeline. 

What is the minimum number of threads needed to always fully utilize the pipeline while 

maintaining correct execution?  Show your work. 

Assume that M=70 and that N is arbitrarily large. 

 

 

 

 

 

 

 

 

Problem 3.D (5 points) 
 

Now consider a dynamic scheduling policy that switches threads only when the next instruction 

would stall due to a data dependency. 

What is the minimum number of threads needed to always fully utilize the pipeline while 

maintaining correct execution?  Show your work. 

Assume that M=70 and that N is arbitrarily large. 

 

 



Problem 4: Out-of-Order Execution (20 points) 
 

For this problem, we consider the following dual-issue out-of-order superscalar processor with a 

unified physical register file. 

 

Dispatch 

● Up to two instructions can be renamed and dispatched per cycle. 

● Register renaming follows the unified physical register file scheme. 

● Instructions are written into the ROB at the end of the REN2/DIS stage. 

Issue 

● There are three issue windows separate from the ROB: 

o ALU operations and branches (INT) 

o Memory operations (MEM) 

o Float-point operations (FP) 

● Instructions are written into the issue window at the end of the REN2/DIS stage. 

● Up to one instruction can be issued to execution per cycle from each issue window. 

● Assume that an age-based scheduler always selects the oldest instruction to issue. 

● An instruction may issue in the same cycle when the last operand that it depends on is in 

the writeback stage. 

● Register operands are read during the ISS stage. 

● The physical register file has 6 read and 3 write ports.  (Assume no structural hazards.) 

 

 

 



Execution 

● All functional units are fully pipelined with the following latencies: 

o ALU operations: 1 cycle 

o Loads and stores: 2 cycles latency (Assume that all accesses hit in the data cache.) 

o Floating-point operations: 4 cycles 

● Writeback occurs in a separate WB stage. 

● Mispredicted branches redirect the frontend and trigger a pipeline flush in the cycle 

after they are resolved in the INT EX stage. 

Commit 

● Up to two instructions can be committed per cycle. 

● Commit is handled by a decoupled unit that looks at the ROB entries. 

● The earliest that an instruction can commit is in the cycle following writeback. 

 



Problem 4.A (10 points) 

 

The following instruction sequence is executed on the out-of-order core described above. 

fmul f1, f3, f2  

add x1, x1, x2  

fsw f1, 4(x1)  

lw x2, 0(x3)  

bnez x2, done Misprediction 

flw f1, 0(x1) Page fault 

fadd f3, f1, f2  

 

Fill out the table with the cycles at which instructions enter the ROB, issue to the functional 

units, complete and write back to the physical register file, and commit.  If an instruction is killed 

before issuing, completing, or committing, mark the corresponding entries with “–”. 

● The ROB is initially empty and contains enough entries for the instructions shown. 

● All instructions are present already in the fetch buffer. 

● bnez is initially predicted to be not taken but later resolves as taken.  The “done” 
branch target points to unrelated code elsewhere. 

● A page fault is detected for flw. 

The first instruction has been done for you. 

 Dispatch Issue Completion Commit 

fmul 0 1 6 7 

add 0    

fsw     

lw     

bnez     

flw     

fadd     



Problem 4.B (10 points) 

 

For the same code as Part 4.A (reproduced below), show the state of the ROB, issue windows, 

rename table, and free list in the cycle after recovering from all mispredicts and exceptions – 

i.e., immediately after precise architectural state has been restored and the processor has been 

redirected to the correct branch target.  Assume that mispredictions and exceptions use the same 

rollback procedure, which happens instantaneously. 

The first instruction has been done for you. 

fmul f1, f3, f2  

add x1, x1, x2  

fsw f1, 4(x1)  

lw x2, 0(x3)  

bnez x2, done Misprediction 

flw f1, 0(x1) Page fault 

fadd f3, f1, f2  

 

The same assumptions as Part 4.A apply: 

● The ROB and issue windows are initially empty. 

● bnez is initially predicted to be not taken but later resolves as taken.  The “done” 
branch target points to unrelated code elsewhere. 

● A page fault is detected for flw. 

 

For each entry in the rename table, show all changes in sequence.   Unused architectural registers 

are omitted from the rename table for clarity. 

The free list is treated as a FIFO, and entries are dequeued from the top and appended to the 

bottom.  Cross out (or mark with “x”) the entries from the free list that have been dequeued. 

Rename Table 

x1 P3 

x2 P8 

x3 P5 

f1 P12  → P2 

f2 P6 

f3 P9 
 

Free List 

P2 x 

P11  

P16  

P14  

P7  

P4  

  

  

  
 



Show the previous contents of all deallocated entries in the ROB and issue windows, and assume 

they are not immediately reused.  Not all entries may be needed. 

Reorder Buffer 

# Done? Rd LPRd Exception? 

0 1 f1 P12  

1     

2     

3     

4     

5     

6     

7     

 

INT Issue Window 

Used? Exec? Operation p1 PR1 p2 PR2 PRd ROB # 

         

         

         

         

 

MEM Issue Window 

Used? Exec? Operation p1 PR1 p2 PR2 PRd ROB # 

         

         

         

         

 

FP Issue Window 

Used? Exec? Operation p1 PR1 p2 PR2 PRd ROB # 

0 1 fmul 1 P9 1 P6 P2 0 

         

         

         

 


