
CS	152	Computer	Architecture	and	Engineering	
CS252	Graduate	Computer	Architecture	

	
	Lecture	4	–	Pipelining	Part	II

John	Wawrzynek	
Electrical	Engineering	and	Computer	Sciences	

University	of	California	at	Berkeley	

http://www.eecs.berkeley.edu/~johnw
http://inst.eecs.berkeley.edu/~cs152

http://www.eecs.berkeley.edu/~johnw

Last	Time	in	Lecture	3

▪ Iron	law	of	performance:	
– time/program	=	insts/program	*	cycles/inst	*	time/cycle	

▪ Classic	5-stage	RISC	pipeline	
▪ Structural,	data,	and	control	hazards	
▪ Structural	hazards	handled	with	interlock	or	more	hardware	
▪ Data	hazards	include	RAW,	WAR,	WAW	

– Handle	data	hazards	with	interlock,	bypass,	or	speculation	

▪ Control	hazards	(branches,	interrupts)	most	difficult	as	change	
which	is	next	instruction	

– Branch	prediction	commonly	used	

▪ Precise	traps:	stop	cleanly	on	one	instruction,	all	previous	
instructions	completed,	no	following	instructions	have	changed	
architectural	state

2

Deeper	Pipelines:	MIPS	R4000

3

Figure C.36 The eight-stage pipeline structure of the R4000 uses pipelined
instruction and data caches. The pipe stages are labeled and their detailed
function is described in the text. The vertical dashed lines represent the stage
boundaries as well as the location of pipeline latches. The instruction is actually
available at the end of IS, but the tag check is done in RF, while the registers are
fetched. Thus, we show the instruction memory as operating through RF. The TC
stage is needed for data memory access, because we cannot write the data into
the register until we know whether the cache access was a hit or not.

© 2018 Elsevier Inc. All rights reserved.

Commit Point

Direct-mapped I$ allows use of
instruction before tag check complete

R4000	Load-Use	Delay

4© 2018 Elsevier Inc. All rights reserved.

Direct-mapped D$ allows use of
data before tag check complete

R4000	Branches

5

Figure C.39 The basic branch delay is three cycles, because the
condition evaluation is performed during EX.

© 2018 Elsevier Inc. All rights reserved.

Simple	vector-vector	add	code	example

for(i=0; i<N; i++)
A[i] = B[i]+C[i];

loop: fld f0, 0(x2) // x2 points to B
 fld f1, 0(x3) // x3 points to C
 fadd.d f2, f0, f1
 fsd f2, 0(x1) // x1 points to A
 addi x1, x1, 8 // Bump pointer
 addi x2, x2, 8 // Bump pointer
 addi x3, x3, 8 // Bump pointer
 bne x1, x4, loop // x4 holds end

6

Simple	Pipeline	Scheduling

Can	reschedule	code	to	try	to	reduce	pipeline	hazards

loop: fld f0, 0(x2) // x2 points to B
 fld f1, 0(x3) // x3 points to C
 addi x3, x3, 8 // Bump pointer
 addi x2, x2, 8 // Bump pointer
 fadd.d f2, f0, f1
 addi x1, x1, 8 // Bump pointer
 fsd f2, -8(x1) // x1 points to A
 bne x1, x4, loop // x4 holds end

Long	latency	loads	and	floating-point	operations	limit	parallelism	
within	a	single	loop	iteration	

7

One	way	to	reduce	hazards:	Loop	Unrolling
Can	unroll	to	expose	more	parallelism,	reduce	dynamic	instruction	count
loop: fld f0, 0(x2) // x2 points to B
 fld f1, 0(x3) // x3 points to C
 fld f10, 8(x2)
 fld f11, 8(x3)
 addi x3,x3,16 // Bump pointer
 addi x2,x2,16 // Bump pointer
 fadd.d f2, f0, f1
 fadd.d f12, f10, f11
 addi x1,x1,16 // Bump pointer
 fsd f2, -16(x1) // x1 points to A
 fsd f12, -8(x1)
 bne x1, x4, loop // x4 holds end

▪ Unrolling	limited	by	number	of	architectural	registers	
▪ Unrolling	increases	instruction	cache	footprint	
▪ More	complex	code	generation	for	compiler,	has	to	understand	pointers	
▪ Can	also	software	pipeline,	but	has	similar	concerns

8

CS152	Administrivia

▪ PS	1	due	11:59PM	on	Monday	Feb	8	
▪ Lab	1	due	11:59PM	Wed	Feb	17

9

Supercomputers
Definitions	of	a	supercomputer:	
▪ Fastest	machine	in	world	at	given	task	
▪ A	device	to	turn	a	compute-bound	problem	into	an	I/O	
bound	problem		

▪ Any	machine	costing	$30M+	
▪ Any	machine	designed	by	Seymour	Cray	

▪ CDC6600	(Cray,	1964)	regarded	as	first	supercomputer	

▪ Today:	“www.top500.org"	
▪ Fugaku	remains	the	No.	1	system.	It	has	7,630,848	cores	which	allowed	it	
to	achieve	an	HPL	benchmark	score	of	442	Pflop/s.	This	puts	it	3x	ahead	
of	the	No.	2	system	in	the	list.		

10

http://www.top500.org

CDC	6600	Seymour	Cray,	1964

▪A	fast	pipelined	machine	with	60-bit	words	
– 128	Kword	main	memory	capacity,	32	banks	

▪ Ten	functional	units	(parallel,	unpipelined)	
– Floating	Point:	adder,	2	multipliers,	divider	
– Integer:	adder,	2	incrementers,	...	

▪Hardwired	control	(no	microcoding)	
▪ Scoreboard	for	dynamic	scheduling	of	instructions		
▪ Ten	Peripheral	Processors	for	Input/Output	

– a	fast	multi-threaded	12-bit	integer	ALU	
▪Very	fast	clock,	10	MHz	(FP	add	in	4	clocks)	
▪ >400,000	transistors,		750	sq.	ft.,	5	tons,	150	kW,	novel	
freon-based	technology	for	cooling	
▪ Fastest	machine	in	world	for	5	years	(until	7600)	

– over	100	sold	($7-10M	each)

11
3/10/2009

CDC	6600:		
A	Load/Store	Architecture

12

• Separate	instructions	to	manipulate	three	types	of	reg.	
• 8x60-bit	data	registers	(X)	
• 8x18-bit	address	registers	(A)	
• 	8x18-bit	index	registers	(B)	

• All	arithmetic	and	logic	instructions	are	register-to-register		

•Only	Load	and	Store	instructions	refer	to	memory!	

	 Touching	address	registers	1	to	5	initiates	a	load			
	 	 	 	 								6	to	7	initiates	a	store		

	 -	very	useful	for	vector	operations

opcode i j k Ri ← Rj op Rk

opcode i j disp Ri ← M[Rj + disp]

6 3 3 3

6 3 3 18

CDC	6600:	Datapath

13

Address	Regs									Index	Regs	
		8	x	18-bit																8	x	18-bit

Operand	Regs	
8	x	60-bit

Inst.	Stack	
8	x	60-bit

IR

10	Functional	
Units

Central	
Memory	
128K	words,	
32	banks,	
1µs	cycle

result	
addr

result

operand

operand	
addr

CDC6600:	Vector	Addition

14

B0		←		-	n	
loop:	 JZE			B0,	exit	

A0	←		B0	+	a0	 	 load	X0	
A1	←		B0	+	b0			 load	X1	
X6	←		X0	+	X1	
A6	←		B0	+	c0			 store	X6	
B0	←		B0	+	1	
jump	loop	

Ai	=	address	register	
Bi	=	index	register	
Xi	=	data	register

c = a + b

CDC6600	ISA	designed	to	simplify	high-
performance	implementation

▪ Use	of	three-address,	register-register	ALU	instructions	simplifies	
pipelined	implementation	
– Only	3-bit	register-specifier	fields	checked	for	dependencies	
– No	implicit	dependencies	between	inputs	and	outputs	

▪ Decoupling	setting	of	address	register	(Ar)	from	retrieving	value	
from	data	register	(Xr)	simplifies	providing	multiple	outstanding	
memory	accesses	
– Address	update	instruction	also	issues	implicit	memory	operation	
– Software	can	schedule	load	of	address	register	before	use	of	value	
– Can	interleave	independent	instructions	in	between	

▪ CDC6600	has	multiple	parallel	unpipelined	functional	units	
– E.g.,	2	separate	multipliers	

▪ Follow-on	machine	CDC7600	used	pipelined	functional	units	
– Foreshadows	later	RISC	designs

15

16
[©	IBM]

IBM	Memo	on	CDC6600
Thomas	Watson	Jr.,	IBM	CEO,	August	1963:	

	 “Last	week,	Control	Data	...	announced	the	6600	system.	I	understand	
that	in	the	laboratory	developing	the	system	there	are	only	34	people	
including	the	janitor.	Of	these,	14	are	engineers	and	4	are	programmers...	
Contrasting	this	modest	effort	with	our	vast	development	activities,	I	fail	to	
understand	why	we	have	lost	our	industry	leadership	position	by	letting	
someone	else	offer	the	world's	most	powerful	computer.”	

		
To	which	Cray	replied:	“It	seems	like	Mr.	Watson	has	

answered	his	own	question.”

17

Computer	Architecture	Terminology

Latency	(in	seconds	or	cycles):		Time	taken	for	a	single	
operation	from	start	to	finish	(initiation	to	useable	result)	
Bandwidth	(in	operations/second	or	operations/cycle):	Rate	
of	which	operations	can	be	performed		
Occupancy	(in	seconds	or	cycles):	Time	during	which	the	unit	
is	blocked	on	an	operation	(structural	hazard)	
Note,	for	a	single	functional	unit:	
▪ Occupancy	can	be	less	than	latency	(how?)	
▪ Occupancy	can	be	equal	to	latency	(how?)	
▪ Bandwidth	can	be	greater	than	1/latency	(how?)	
▪ Bandwidth	can	be	equal	to	1/latency	(how?)	
▪ Can	Occupancy	be	greater	than	latency?

18

Issues	in	Complex	Pipeline	Control

19

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs	
FPRs

•	Structural	conflicts	at	the	execution	stage	if	some	FPU	or	memory	unit	is	not	
pipelined	and	takes	more	than	one	cycle	
•	Structural	conflicts	at	the	write-back	stage	due	to	variable	latencies	of	different	
functional	units	
•	Out-of-order	write	hazards	due	to	variable	latencies	of	different	functional	
units	
•	How	to	handle	exceptions?

CDC6600	Scoreboard

▪ Instructions	dispatched	in-order	to	functional	units	
provided	no	structural	hazard	or	WAW	
– Stall	on:	structural	hazard,	no	functional	units	available	
– Only	one	pending	write	to	any	register	

▪ Instructions	wait	for	input	operands	(RAW	hazards)	before	
execution	
– Can	execute	out-of-order	

▪ Instructions	wait	for	output	register	to	be	read	by	
preceding	instructions	(WAR)	
– Result	held	in	functional	unit	until	register	free

20

Scoreboarding is a centralized method, first used in the CDC 6600
computer, for dynamically scheduling instructions so that they can execute
out of order when there are no conflicts and the hardware is available.*

* Thornton, James E. (1965). "Parallel operation in the control data 6600". Proceedings of the October 27–29, 1964, fall joint
computer conference, part II: very high speed computer systems. AFIPS '64. San Francisco, California: ACM. pp. 33–40.
doi:10.1145/1464039.1464045.

https://en.wikipedia.org/wiki/CDC_6600
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F1464039.1464045

More	Complex	In-Order	Pipeline

21

▪ Delay	writeback	so	all	operations	
have	same	latency	to	W	stage	
– Write	ports	never	oversubscribed	
(one	inst.	in	&	one	inst.	out	every	
cycle)	

– Stall	pipeline	on	long	latency	
operations,	e.g.,	divides,	cache	
misses	

– Handle	exceptions	in-order	at	
commit	point

Commit	
Point

PC
Inst.	
Mem D Decode X1 X2

Data	
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined	
divider

How	to	prevent	increased	writeback	latency	
from	slowing	down	single	cycle	integer	
operations?	 Bypassing

In-Order	Superscalar	Pipeline

22

▪ Fetch	two	instructions	per	cycle;	issue	both	
simultaneously	if	one	is	integer/memory	and	
other	is	floating	point	

▪ Inexpensive	way	of	increasing	throughput,	
examples	include	Alpha	21064	(1992)	&	MIPS	
R5000	series	(1996)	

▪ Same	idea	can	be	extended	to	wider	issue	by	
duplicating	functional	units	(e.g.	4-issue	
UltraSPARC	&	Alpha	21164)	but	regfile	ports	
and	bypassing	costs	grow	quickly

Commit	
Point

2
PC

Inst.	
Mem D

Dual	
Decod
e

X1 X2
Data	
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined	
divider

Acknowledgements

▪ This	course	is	partly	inspired	by	previous	MIT	6.823	and	
Berkeley	CS252	computer	architecture	courses	created	by	
my	collaborators	and	colleagues:	
– Arvind	(MIT)	
– Joel	Emer	(Intel/MIT)	
– James	Hoe	(CMU)	
– John	Kubiatowicz	(UCB)	
– David	Patterson	(UCB)

23

