
CS	152	Computer	Architecture	and	Engineering	
CS252	Graduate	Computer	Architecture	

	
	Lecture	19	Memory	Consistency	Models		

and	Synchronization

John	Wawrzynek	
Electrical	Engineering	and	Computer	Sciences	

University	of	California	at	Berkeley	

http://www.eecs.berkeley.edu/~johnw
http://inst.eecs.berkeley.edu/~cs152

http://www.eecs.berkeley.edu/~johnw

Last	Time	in	Lecture	18
▪ Cache	coherence,	making	sure	every	store	to	memory	is	
eventually	visible	to	any	load	to	same	memory	address	

▪ Cache	line	states:	M,S,I	or	M,E,S,I	
▪ Cache	miss	if	tag	not	present,	or	line	has	wrong	state	

– Write	to	a	shared	line	is	handled	as	a	miss	

▪ Snoopy	coherence:	
– Broadcast	updates	and	probe	all	cache	tags	on	any	miss	of	any	processor,	
used	to	be	bus	connection	now	often	broadcast	over	point-to-point	links	

– Consumes	lots	of	bandwidth	on	both	the	communication	bus	and	for	
probing	the	cache	tags	

▪ Directory	coherence:	
– Structure	keeps	track	of	which	caches	can	have	copies	of	data,	and	only	
send	messages/probes	to	those	caches	

– Complicated	to	get	right	with	all	the	possible	overlapping	cache	
transactions

2

Synchronization

The	need	for	synchronization	arises	
whenever	there	are	concurrent	processes	in	
a	system	(even	in	a	uniprocessor	system).	

Two	classes	of	synchronization:	
▪ Producer-Consumer:	A	consumer	process	
must	wait	until	the	producer	process	has	
produced	data	

▪Mutual	Exclusion:	Ensure	that	only	one	
process	uses	a	resource	at	a	given	time

3

producer

consumer

Shared	
Resource

P1 P2

Shared	Memory

Simple	Producer-Consumer	Example

sw xdata, (xdatap)
li xflag, 1
sw xflag, (xflagp)

spin: lw xflag, (xflagp)	
beqz xflag, spin	
lw xdata, (xdatap)

4

data
flag

Is	this	correct?

xflagp

xdatap

xflagp

xdatap

Initially	flag=0

Producer	
processor

Consumer	
processor

Simple	Producer-Consumer	Example

sw xdata, (xdatap)
li xflag, 1
sw xflag, (xflagp)

spin: lw xflag, (xflagp)	
beqz xflag, spin	
lw xdata, (xdatap)

5

data
flag

Producer Consumer

Can	consumer	read	flag=1	before	data	
written	by	producer	visible	to	consumer?

Initially	flag=0

Memory	Consistency	Model

▪ Sequential	ISA	only	specifies	that	each	processor	sees	its	
own	memory	operations	in	program	order	

▪Memory	consistency	model	describes	what	values	can	be	
returned	by	load	instructions	across	multiple	hardware	
threads	

▪ Coherence	describes	the	legal	values	a	single	memory	
address	should	return	

▪ Consistency	describes	properties	across	all	memory	
addresses

6

Sequential	Consistency	(SC)	
A	Memory	Model

7

“	A	system	is	sequentially	consistent	if	the	result	of	any	
execution	is	the	same	as	if	the	operations	of	all	the	
processors	were	executed	in	some	sequential	order,	and	the	
operations	of	each	individual	processor	appear	in	the	order	
specified	by	the	program”	
	 	 	 	 	 	Leslie	Lamport	

Sequential	Consistency	=	arbitrary	order-preserving	
interleaving	of	memory	references	of	sequential	programs

M

P P P P P P

Simple	Producer-Consumer	Example

sw xdata, (xdatap)
li xflag, 1
sw xflag, (xflagp)

spin: lw xflag, (xflagp)	
beqz xflag, spin	
lw xdata, (xdatap)

8

data
flag

Producer Consumer

Initially	flag	=0

Dependencies	from	sequential	ISA

Dependencies	added	by	sequentially	
consistent	memory	model

▪A	memory	consistency	model	is	a	contract	between	the	hardware	and	software.	The	hardware	
promises	to	only	reorder	operations	in	ways	allowed	by	the	model,	and	in	return,	the	software	
acknowledges	that	all	such	reorderings	are	possible	and	that	it	needs	to	account	for	them.		
▪ SC	articulated	by	Leslie	Lamport	-	2013	Turing	award	winner	
▪ “Intuitive”	model	of	parallelism	

9

Sequential	Consistency	(SC)	
A	Memory	Model

[Thanks to James Bornholt, UT Austin]

▪Multiple	threads	running	in	parallel	
manipulate	a	single	main	memory,	and	so	
everything	must	happen	in	order.	There’s	
no	notion	that	two	events	can	occur	“at	the	
same	time”.	Note	that	this	rule	says	nothing	
about	what	order	the	events	happen	in—
just	that	they	happen	in	some	order.	

▪Events	happen	in	program	order:	the	
events	in	a	single	thread	happen	in	
the	order	in	which	they	were	written.		

▪ The	problem	with	this	model	is	that	it’s	terribly,	disastrously	slow.	

SC	Example	[James	Bornholt,	UT	Austin]

10

Under SC, 00 can’t be printed. Without SC could it? Consider store buffers!

(Cache coherence doesn’t kick in until memory system moves values to last level cache.)

Most	real	machines	are	not	SC

▪ Only	a	few	commercial	ISAs	require	SC	
– Neither	IBM	370	nor	x86	nor	ARM	nor	RISC-V	are	SC	

▪ Originally,	architects	developed	uniprocessors	with	optimized	
memory	systems	(e.g.,	store	buffer)	

▪When	uniprocessors	were	lashed	together	to	make	
multiprocessors,	resulting	machines	were	not	SC	

▪ Requiring	SC	would	make	simpler	machines	slower,	or	requires	
adding	complex	hardware	to	retain	performance	

▪ Resulted	in	“weak”	memory	models	with	fewer	guarantees		
▪ Architects/language	designers/applications	developers	work	
hard	to	explain	weak	memory	behavior

11

Store	Buffer	Optimization

▪ Common	optimization	allows	stores	to	be	buffered	while	
waiting	for	access	to	shared	memory	

▪ Load	optimizations:	
– Later	loads	can	go	ahead	of	buffered	stores	if	to	different	address	
– Later	loads	can	bypass	value	from	earlier	buffered	store	if	to	same	
address

12

CPU

Store
Buffer

Shared Memory

CPU

Store
Buffer

TSO,	PC

Allowing reads to move ahead of writes

▪ Total store ordering (TSO)
 - Processor P can read B before its write to A is seen by all processors
 (processor can move its own reads in front of its own writes)
 - Reads by other processors cannot return new value of A until the write to A
is observed by all processors

▪ Processor consistency (PC)
- Any processor can read new value of A before the write is observed by all
processors

▪ In TSO and PC, only W→R order is relaxed. The W→W constraint still exists.
Writes by the same thread are not reordered (they occur in program order)

13
[Stanford CS149, Winter 2019]

Write A

Read B

A	weaker	memory	model:	Total	Store	Ordering	(TSO)	-	example

▪ Allows	local	buffering	of	stores	by	processor

14

X, Y shared, initially Memory[X] = Memory[Y] = 0

P1:
li x1, 1
sw x1, X
lw x2, Y

P2:
li x1, 1
sw x1, Y
lw x2, X

P1.x2 P2.x2 SC TSO

0 0 N Y
0 1 Y Y
1 0 Y Y
1 1 Y Y

Possible	Outcomes

▪ TSO	is	the	strongest	memory	model	in	common	use	

Strong	versus	Weak	
Memory	Consistency	Models

▪ Stronger	models	provide	more	guarantees	on	ordering	of	
loads	and	stores	across	different	hardware	threads	
– Easier	ISA-level	programming	model	
– Can	require	more	hardware	to	ensure	orderings	(e.g.,	MIPS	R10K	
was	SC,	with	hardware	to	speculate	on	load/stores	and	squash	
when	ordering	violations	detected	across	cores)	

▪Weaker	models	provide	fewer	guarantees	
– Much	more	complex	ISA-level	programming	model	

• Extremely	difficult	to	understand,	even	for	experts	
– Simpler	to	achieve	high	performance,	as	weaker	models	allow	
software	to	impose	hardware	reorderings	

– Additional	instructions	(fences)	are	provided	to	allow	software	to	
specify	which	orderings	are	required

15

Fences	in	Producer-Consumer	Example

sw xdata, (xdatap)
li xflag, 1
fence w,w //Write-write	fence	
sw xflag, (xflagp)

spin: lw xflag, (xflagp)	
beqz xflag, spin	
fence r,r //	Read-read	fence
lw xdata, (xdatap)

16

data
flag

Producer Consumer

Initially	flag	=0

A fence instruction forces memory operations before it to complete
before memory operation after it can begin.

CS152	Administrivia

▪ Lab	4	due	Tuesday	April	19,	Lab	5	out	
▪ PS	5	(final	PS)	due	April	26	
▪Midterm	2	Comments?	

– Grading	underway

17

Hierarchical	Shared	Buffering

▪ Common	in	large	systems	to	have	shared	intermediate	buffers	on	
path	between	CPUs	and	global	memory	

▪ Potential	optimization	is	to	allow	some	CPUs	see	some	writes	by	a	
CPU	before	other	CPUs	

▪ Shared	memory	stores	are	not	seen	to	happen	atomically	by	other	
threads	(non	multi-copy	atomic)

18

CPU

Intermediate
Buffer

Shared Memory

CPU CPU

Intermediate
Buffer

CPU

Multi-Copy	Atomic	models

▪ Each	hardware	thread	must	view	its	own	memory	operations	in	
program	order,	but	can	buffer	these	locally	and	reorder	
accesses	around	the	buffer	

▪ But	once	a	local	store	is	made	visible	to	one	other	hardware	
thread	in	system,	all	other	hardware	threads	must	also	be	able	
to	observe	it	(this	is	what	is	meant	by	“atomic”)

19

CPU

Buffer

Shared Memory

CPU

Buffer

Point	of	global	visibility

Range	of	Memory	Consistency	Models

▪ SC	“Sequential	Consistency”	
– MIPS	R10K	

▪ TSO	“Total	Store	Order”	
– processor	can	see	its	own	writes	before	others	do	(store	buffer)	
– IBM-370	TSO,	x86	TSO,	SPARC	TSO	(default),	RISC-V	RVTSO	(optional)	

▪Weak,	multi-copy-atomic	memory	models	
– all	processors	see	writes	by	another	processor	in	same	order	
– Revised	ARM	v8	memory	model	
– RISC-V	RVWMO,	baseline	weak	memory	model	for	RISC-V	

▪Weak,	non-multi-copy-atomic	memory	models	
– processors	can	see	another’s	writes	in	different	orders	
– ARM	v7,	original	ARM	v8	
– IBM	POWER	
– Digital	Alpha	(extremely	weak	MCM)	
– Recent	consensus	is	that	these	appear	to	be	too	weak	for	general-
purpose	processors

20

Relaxed	Memory	Models

▪ Not	all	dependencies	assumed	by	SC	are	supported,	and	
software	has	to	explicitly	insert	additional	dependencies	were	
needed	

▪Which	dependencies	are	dropped	depends	on	the	particular	
memory	model	
– IBM370,	TSO,	PSO,	WO,	PC,	Alpha,	RMO,	…	
– Some	ISAs	allow	several	memory	models,	some	machines	have	
switchable	memory	models	

▪ How	to	introduce	needed	dependencies	varies	by	system	
– Explicit	FENCE	instructions	(sometimes	called	sync	or	memory	barrier	
instructions)	

– Implicit	effects	of	atomic	memory	instructions	

How	on	earth	are	programmers	supposed	to	work	with	this????

21

Language-Level	Memory	Models

▪ Programming	languages	have	memory	models	too	
▪ Hide	details	of	each	ISA’s	memory	model	underneath	
language	standard	
– c.f.	C	function	declarations	versus	ISA-specific	subroutine	linkage	
convention	

▪ Language	memory	models:	C/C++,	Java	
▪ Describe	legal	behaviors	of	threaded	code	in	each	language	
and	what	optimizations	are	legal	for	compiler	to	make	

▪ E.g.,	C11/C++11:		atomic_load(memory_order_seq_cst)
maps	to	RISC-V			fence rw,rw; lw; fence r,rw	

22

Synchronization

The	need	for	synchronization	arises	
whenever	there	are	concurrent	processes	in	
a	system	(even	in	a	uniprocessor	system).	

Two	classes	of	synchronization:	
▪ Producer-Consumer:	A	consumer	process	
must	wait	until	the	producer	process	has	
produced	data	

▪Mutual	Exclusion:	Ensure	that	only	one	
process	uses	a	resource	at	a	given	time

23

producer

consumer

Shared	
Resource

P1 P2

Memory

Simple(st)	Mutual-Exclusion	Example

24

// Both threads execute:
ld xdata, (xdatap)
add xdata, 1
sd xdata, (xdatap)

data
Thread	1 Thread	2

Is	this	correct?	What	are	the	possible	outcomes?

xdatap xdatap

Need to provide exclusive access to each thread.

Mutual	Exclusion	Using	Load/Store	
(assume	SC)	

25

A protocol based on two shared variables c1 and c2.
Initially, both c1 and c2 are 0. c1 or c2 indicate
intent to enter the critical section (reservation).

What is wrong?

Process 1
 ...
c1=1;

L: if c2=1 then go to L
 < critical section>
c1=0;

Process 2
 ...
c2=1;

L: if c1=1 then go to L
 < critical section>
c2=0;

Deadlock!

Mutual	Exclusion:	second	attempt

26

To avoid deadlock, let a process give up the reservation
(i.e. Process 1 sets c1 to 0) while waiting.

• Deadlock is not possible but with a low probability a
livelock may occur.

• An unlucky process may never get to enter the critical
section ⇒ starvation

Process 1
 ...

L: c1=1;
if c2=1 then

 { c1=0; go to L}
 < critical section>
c1=0

Process 2
 ...

L: c2=1;
if c1=1 then

 { c2=0; go to L}
 < critical section>
c2=0

A	Protocol	for	Mutual	Exclusion	
T.	Dekker,	1966

27

Process 1
...
c1=1;
turn = 1;

L: if c2=1 & turn=1
 then go to L

 < critical section>
c1=0;

A protocol based on 3 shared variables c1, c2 and turn.
Initially, both c1 and c2 are 0 (not busy)

• turn = i ensures that only process i can wait
• variables c1 and c2 ensure mutual exclusion
 Solution for n processes was given by Dijkstra
 and is quite tricky!

Process 2
...
c2=1;
turn = 2;

L: if c1=1 & turn=2
 then go to L

 < critical section>
c2=0;

Analysis	of	Dekker’s	Algorithm

28

... Process 1
c1=1;
turn = 1;

L: if c2=1 & turn=1
 then go to L

 < critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2
 then go to L

 < critical section>
c2=0;

S
ce

na
ri
o

1

... Process 1
c1=1;
turn = 1;

L: if c2=1 & turn=1
 then go to L

 < critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2
 then go to L

 < critical section>
c2=0;

S
ce

na
ri
o

2

ISA	Support	for	Mutual-Exclusion	Locks

▪ Regular	loads	and	stores	in	SC	model	(plus	fences	in	weaker	
model)	sufficient	to	implement	mutual	exclusion,	but	code	
is	inefficient	and	complex	

▪ Therefore,	atomic	read-modify-write	(RMW)	instructions	
added	to	ISAs	to	support	mutual	exclusion	

▪Many	forms	of	atomic	RMW	instruction	possible,	some	
simple	examples:	
– Test	and	set	(reg_x	=	M[a];	M[a]=1)	
– Swap	(reg_x=M[a];	M[a]	=	reg_y)

29

Release	Lock

Acquire	Lock

Critical	Section

Memory

Lock	for	Mutual-Exclusion	Example

// Both threads execute:

li xone, 1

spin: amoswap xlock, xone, (xlockp)

bnez xlock, spin

ld xdata, (xdatap)

add xdata, 1

sd xdata, (xdatap)

sd x0, (xlockp)

30

data
Thread	1 Thread	2
xdatap xdatap

lock
xlockp xlockp

Assumes	SC	memory	model

Release	Lock

Acquire	Lock

Critical	Section

Memory

Lock	for	Mutual-Exclusion	with	Relaxed	MM

31

// Both threads execute:
li xone, 1

spin: amoswap xlock, xone, (xlockp)
bnez xlock, spin
fence r,rw
ld xdata, (xdatap)
add xdata, 1
sd xdata, (xdatap)
fence rw,w
sd x0, (xlockp)

data
Thread	1 Thread	2
xdatap xdatap

lock
xlockp xlockp

RISC-V	Atomic	Memory	Operations

▪ Atomic	Memory	Operations	(AMOs)	have	two	ordering	
bits:	
– Acquire	(aq)	
– Release	(rl)	

▪ If	both	clear,	no	additional	ordering	implied	
▪ If	aq	set,	then	AMO	“happens	before”	any	following	loads	
or	stores	

▪ If	rl	set,	then	AMO	“happens	after”	any	earlier	loads	or	
stores	

▪ If	both	aq	and	rl	set,	then	AMO	happens	in	program	order

32

Release	Lock

Acquire	Lock

Critical	Section

Memory

Lock	for	Mutual-Exclusion	using	RISC-V	AMO

33

// Both threads execute:
li xone, 1

spin: amoswap.w.aq xlock, xone, (xlockp)
bnez xlock, spin
ld xdata, (xdatap)
add xdata, 1
sd xdata, (xdatap)
amoswap.w.rl x0, x0, (xlockp)

data
Thread	1 Thread	2
xdatap xdatap

lock
xlockp xlockp

RISC-V	FENCE	versus	AMO.aq/rl

34

 sd x1, (a1) # Unrelated store	
 ld x2, (a2) # Unrelated load	
 li t0, 1	
again:	
 amoswap.w.aq t0, t0, (a0)	
 bnez t0, again	
 # …
 # critical section	
 # …
 amoswap.w.rl x0, x0, (a0)	
 sd x3, (a3) # Unrelated store	
 ld x4, (a4) # Unrelated load

 sd x1, (a1) # Unrelated store	
 ld x2, (a2) # Unrelated load	
 li t0, 1	
again:	
 amoswap.w t0, t0, (a0)	
 fence r, rw
 bnez t0, again	
 # …
 # critical section	
 # …
 fence rw, w	
 amoswap.w x0, x0, (a0)	
 sd x3, (a3) # Unrelated store	
 ld x4, (a4) # Unrelated load

AMOs	only	order	the	AMO	w.r.t.	other	loads/stores/AMOs	

FENCEs	order	every	load/store/AMO	before/after	FENCE

Acknowledgements

▪ This	course	is	partly	inspired	by	previous	MIT	6.823	and	
Berkeley	CS252	computer	architecture	courses	created	by	
my	collaborators	and	colleagues:	
– Arvind	(MIT)	
– Joel	Emer	(Intel/MIT)	
– James	Hoe	(CMU)	
– John	Kubiatowicz	(UCB)	
– David	Patterson	(UCB)

35

