CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 21 I/O & Warehouse-Scale Computing

John Wawrzynek
Electrical Engineering and Computer Sciences
University of California at Berkeley

http://www.eecs.berkeley.edu/~johnw
http://inst.eecs.berkeley.edu/~cs152
Warehouse-Scale Computer

[www.researchgate.net]
Warehouse-scale computers (WSCs)

- Provides Internet services
 - Search, social networking, online maps, video sharing, online shopping, email, cloud computing, etc.

- Differences with high-performance computing (HPC) “clusters”: (ex: https://www.nersc.gov)
 - Clusters have higher performance processors and network
 - Clusters emphasize thread-level parallelism, WSCs emphasize request-level parallelism

- Differences with datacenters:
 - Datacenters consolidate different machines and software into one location
 - Datacenters emphasize virtual machines and hardware heterogeneity in order to serve varied customers
WSC Characteristics

- Ample computational parallelism within an application is not important
 - Most jobs are totally independent
 - “Request-level parallelism”
- Operational costs count
 - Power consumption is a primary, not secondary, constraint when designing system
- Massive scale presents opportunities and problems
 - Can afford to build customized systems since WSC require volume purchase, bulk discounts
 - Challenges: custom hardware, failures
- Location counts
 - Real estate, power cost; Internet, end-user, and workforce availability
- Design to handle peak load - and for computing efficiently at low utilization
Efficiency and Cost of WSC

- Location of WSC
 - Proximity to Internet backbones, electricity cost, property tax rates, low risk from earthquakes, floods, and hurricanes
In 2017 AWS had 16 sites ("regions"), with two more opening soon. Most sites have two to three availability zones, which are located nearby but are unlikely to be affected by the same natural disaster or power outage, if one were to occur. (The number of availability zones are listed inside each circle on the map.) These 16 sites or regions collectively have 42 availability zones. Each availability zone has one or more WSCs. https://aws.amazon.com/about-aws/global-infrastructure/.
Figure 6.19 In 2017 Google had 15 sites. In the Americas: Berkeley County, South Carolina; Council Bluffs, Iowa; Douglas County, Georgia; Jackson County, Alabama; Lenoir, North Carolina; Mayes County, Oklahoma; Montgomery County, Tennessee; Quilicura, Chile; and The Dalles, Oregon. In Asia: Changhua County, Taiwan; Singapore. In Europe: Dublin, Ireland; Eemshaven, Netherlands; Hamina, Finland; St. Ghislain, Belgium. https://www.google.com/about/datacenters/inside/locations/.
Figure 6.20 In 2017 Microsoft had 34 sites, with four more opening soon. https://azure.microsoft.com/en-us/regions/.
Power Distribution

11% lost in distribution
\[.997 \times .94 \times .98 \times .98 \times .99 = 89\% \]

IT Load (servers, storage, Net, ...)

Generators

UPS & Gen often on 480v

Sub-station

115kV

13.2kV

0.3\% loss
99.7\% efficient

6\% loss
94\% efficient, ~97\% available

2\% loss
98\% efficient

2\% loss
98\% efficient

Transformers

208V

480V

~1\% loss in switch gear & conductors

Transformer

© 2019 Elsevier Inc. All rights reserved.
Infrastructure and Costs of WSC

- Cooling system also uses water (evaporation and spills)
 - E.g. 70,000 to 200,000 gallons per day for an 8 MW facility

- Power cost breakdown:
 - Room air chillers: additional 30-50% of the power used by the IT equipment
 - Server air conditioning: 10-20% of the IT power, mostly due to fans
Infrastructure and Costs of WSC

- **Determining the maximum server capacity**
 - Nameplate power rating: maximum power that a server can draw
 - Better approach: measure under various workloads
 - Oversubscribe by 40%

- **Typical power usage by component:**
 - Processors: 42%
 - DRAM: 12%
 - Disks: 14%
 - Networking: 5%
 - Cooling: 15%
 - Power overhead: 8%
 - Miscellaneous: 4%
Power Utilization Effectiveness (PUE) = Total facility power / IT equipment power

Figure 6.11 Average power utilization efficiency (PUE) of the 15 Google WSCs between 2008 and 2017. The spiking line is the quarterly average PUE, and the straighter line is the trailing 12-month average PUE. For Q4 2016, the averages were 1.11 and 1.12, respectively.
Performance, Latency

- Latency is an important metric because it is seen by users.
- Bing study: users will use search less as response time increases.
- Service Level Objectives (SLOs)/Service Level Agreements (SLAs):
 - E.g. 99% of requests be below 100 ms.

<table>
<thead>
<tr>
<th>Server delay (ms)</th>
<th>Increased time to next click (ms)</th>
<th>Queries/ user</th>
<th>Any clicks/ user</th>
<th>User satisfaction</th>
<th>Revenue/ user</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>200</td>
<td>500</td>
<td>—</td>
<td>—0.3%</td>
<td>—0.4%</td>
<td>—</td>
</tr>
<tr>
<td>500</td>
<td>1200</td>
<td>—</td>
<td>—1.0%</td>
<td>—0.9%</td>
<td>—1.2%</td>
</tr>
<tr>
<td>1000</td>
<td>1900</td>
<td>0.7%</td>
<td>—1.9%</td>
<td>—1.6%</td>
<td>—2.8%</td>
</tr>
<tr>
<td>2000</td>
<td>3100</td>
<td>1.8%</td>
<td>—4.4%</td>
<td>—3.8%</td>
<td>—4.3%</td>
</tr>
<tr>
<td>Approx. number events in 1st year</td>
<td>Cause</td>
<td>Consequence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 or 2</td>
<td>Power utility failures</td>
<td>Lose power to whole WSC; doesn’t bring down WSC if UPS and generators work (generators work about 99% of time).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cluster upgrades</td>
<td>Planned outage to upgrade infrastructure, many times for evolving networking needs such as recabling, to switch firmware upgrades, and so on. There are about nine planned cluster outages for every unplanned outage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000s</td>
<td>Hard-drive failures</td>
<td>2%–10% annual disk failure rate (Pinheiro et al., 2007)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slow disks</td>
<td>Still operate, but run 10 × to 20 × more slowly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bad memories</td>
<td>One uncorrectable DRAM error per year (Schroeder et al., 2009)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Misconfigured machines</td>
<td>Configuration led to ∼30% of service disruptions (Barroso and Hölzle, 2009)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flaky machines</td>
<td>1% of servers reboot more than once a week (Barroso and Hölzle, 2009)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>Individual server crashes</td>
<td>Machine reboot; typically takes about 5 min (caused by problems in software or hardware).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.1 List of outages and anomalies with the approximate frequencies of occurrences in the first year of a new cluster of 2400 servers. We label what Google calls a cluster an array; see Figure 6.5. Based on Barroso, L.A., 2010. Warehouse Scale Computing [keynote address]. In: Proceedings of ACM SIGMOD, June 8–10, 2010, Indianapolis, IN.
Figure 6.3 Average CPU utilization of more than 5000 servers during a 6-month period at Google. Servers are rarely completely idle or fully utilized, instead operating most of the time at between 10% and 50% of their maximum utilization. The third column from the right in Figure 6.4 calculates percentages plus or minus 5% to come up with the weightings; thus 1.2% for the 90% row means that 1.2% of servers were between 85% and 95% utilized.

Figure 6.30 A Google rack for its WSC. Its dimensions are about 7 ft high, 4 ft wide, and 2 ft deep (2 m × 1.2 m × 0.5 m). The Top of Rack switches are indeed at the top of this rack. Next comes the power converter that converts from 240 V AC to 48 V DC for the servers in the rack using a bus bar at the back of the rack. Next is the 20 slots (depending on the height of the server) that can be configured for the various types of servers that can be placed in the rack. Up to four servers can be placed per tray. At the bottom of the rack are high-efficiency distributed modular DC uninterruptible power supply (UPS) batteries.
Figure 6.5 Hierarchy of switches in a WSC. Based on Figure 1.1 in Barroso, L.A., Clidaras, J., Hölzle, U., 2013. The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth. Lect. Comput. Architect. 8 (3), 1–154.
A load balancer monitors how busy a set of servers is and directs traffic to the less loaded ones to try to keep the servers approximately equally utilized. Another option is to use a separate border router to connect the Internet to the data center Layer 3 switches. As we will see in Section 6.6, many modern WSCs have abandoned the conventional layered networking stack of traditional switches.
Array Switch

- Switch that connects an array of racks
 - Array switch should have 10 X the bisection bandwidth of rack switch
 - Cost of n-port switch grows as n^2
 - Often utilize content-addressable memory chips and FPGAs
A Clos network has three logical stages containing crossbar switches: ingress, middle, and egress. Each input to the ingress stage can go through any of the middle stages to be routed to any output of the egress stage. In this figure, the middle stages are the M Spine Blocks, and the ingress and egress stages are in the N Edge Activation Blocks. Figure 6.22 shows the changes in the Spine Blocks and the Edge Aggregation Blocks over many generations of Clos networks in Google WSCs.
Google Jupiter Clos Network

Figure 6.32 Building blocks of the Jupiter Clos network.
© 2019 Elsevier Inc. All rights reserved.
WSC Memory Hierarchy

- Servers can access DRAM and disks on other servers using a NUMA-style interface

<table>
<thead>
<tr>
<th></th>
<th>Local</th>
<th>Rack</th>
<th>Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM latency (μs)</td>
<td>0.1</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>Flash latency (μs)</td>
<td>100</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>Disk latency (μs)</td>
<td>10,000</td>
<td>11,000</td>
<td>12,000</td>
</tr>
<tr>
<td>DRAM bandwidth (MB/s)</td>
<td>20,000</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Flash bandwidth (MB/s)</td>
<td>1000</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Disk bandwidth (MB/s)</td>
<td>200</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>DRAM capacity (GB)</td>
<td>16</td>
<td>1024</td>
<td>31,200</td>
</tr>
<tr>
<td>Flash capacity (GB)</td>
<td>128</td>
<td>20,000</td>
<td>600,000</td>
</tr>
<tr>
<td>Disk capacity (GB)</td>
<td>2000</td>
<td>160,000</td>
<td>4,800,000</td>
</tr>
</tbody>
</table>
Storage options

- Use disks inside the servers, or
- Network attached storage through Infiniband

- WSCs generally rely on local disks
- Google File System (GFS) uses local disks and maintains at least three replicas
Cost of a WSC

- Capital expenditures (CAPEX)
 - Cost to build a WSC
 - $9 to 13/watt

- Operational expenditures (OPEX)
 - Cost to operate a WSC
Prgrm’g Models and Workloads

- Batch processing framework: MapReduce
 - **Map**: applies a programmer-supplied function to each logical input record
 - Runs on thousands of computers
 - Provides new set of key-value pairs as intermediate values
 - **Reduce**: collapses values using another programmer-supplied function
Prgrm’g Models and Workloads

- **Example:**
 - **map (String key, String value):**
 - // key: document name
 - // value: document contents
 - for each word w in value
 - EmitIntermediate(w,”1”); // Produce list of all words

 - **reduce (String key, Iterator values):**
 - // key: a word
 - // value: a list of counts
 - int result = 0;
 - for each v in values:
 - result += ParseInt(v); // get integer from key-value pair
 - Emit(AsString(result));
Prgrm’g Models and Workloads

- **Availability:**
 - Use replicas of data across different servers
 - Use relaxed consistency:
 - No need for all replicas to always agree

- **File systems:** GFS and Colossus
- **Databases:** Dynamo and BigTable
Programming Models and Workloads

- MapReduce runtime environment schedules map and reduce task to WSC nodes
 - Workload demands often vary considerably
 - Scheduler assigns tasks based on completion of prior tasks
 - Tail latency/execution time variability: single slow task can hold up large MapReduce job
- Runtime libraries replicate tasks near end of job
 - Don’t wait for stragglers, repeat task somewhere else