
SOLUTIONS

CS 152 Computer Architecture and Engineering
CS 252 Graduate Computer Architecture

Midterm #2
April 11th, 2018

Professor Krste Asanovic
Name:______________________

I am taking CS152 / CS252

This is a closed book, closed notes exam.

80 Minutes. 20 pages.
Notes:

● Not all questions are of equal difficulty, so look over the entire exam and
budget your time carefully.

● Please carefully state any assumptions you make.
● Please write your name on every page in the exam.
● You must not discuss an exam’s contents with other students who have not

taken the exam. If you have inadvertently been exposed to an exam prior to
taking it, you must tell the instructor or TA.

● You will receive no credit for selecting multiple-choice answers without giving
explanations if the instructions ask you to explain your choice.

CS152 CS252 Your Points
Question 1 25 points 30 points
Question 2 15 points 15 points
Question 3 20 points 20 points
Question 4 15 points 15 points
Question 5 15 points 15 points
Question 6 10 points 15 points

Total 100 points 110 points

Name: ____________________________

Question 1: Out-of-Order Execution [25 + 5 points]
Question 1.A (10 points)

For this question, we want to schedule the following code on an out-of-order core.

fld f0, 0(x1)
fld f1, 8(x1)
fmul.d f0, f0, f1
fadd.d f2, f2, f0
fld f0, 16(x1)
fadd.d f2, f2, f0

The processor is a single-issue core with a data-in-ROB design. The ROB has four
entries. Instructions can commit one cycle after writeback, and ROB entries can
be reused one cycle after commit. Instructions that depend on others can issue
one cycle after the instruction it depends on writes back. Loads and stores take
two cycles each, floating-point multiplies take three cycles, and floating-point
adds take five cycles. All functional units are fully pipelined.

Fill out the table with the cycles at which instructions enter the ROB, issue to the
functional units, write back to the ROB, and commit. Also fill out the new register
names for each instruction. Use r0-r3 for the four ROB entries. If the instruction
producing a source register had already committed before the dependent
instruction enters the ROB, use the architectural register name.

Remember that instructions must enter the ROB and commit in order. On each
cycle, only one instruction can enter the ROB, one can issue, one can write back,
and one can commit.

Time Instruction

Enter ROB Issue WB Commit OP Dest Src1 Src2

I1 -1 0 2 3 FLD r0 x1

I2 0 1 3 4 FLD r1 x1

I3 1 FMUL.D

I4 FADD.D

I5 FLD

I6 FADD.D

1

Name: ____________________________

Question 1.B (15 points)

We execute the following program on an out-of-order core with a unified physical
register file. The “away” target of the branch is in some unrelated part of the
code. The branch predictor initially predicts that the branch is not taken. But
after all six instructions complete, the branch resolves to taken and the store
word has an exception. Show the state of the pipeline after all the mispredicts
and exceptions are handled. That is, after precise architectural state has been
restored and the correct branch target is about to be decoded. Assume that
mispredicts and exceptions use the same rollback procedure and that the free list
is in FIFO order. We have already completed the first instruction for you.

lw x2, 0(x1)

add x3, x2, x5

beq x2, x6, away mispredict

addi x1, x1, 8

sw x3, 0(x1) exception

addi x1, x1, 8

2

Name: ____________________________

Rename Table Physical Register File Free List

x0 p0 p5

x1 p3 p1 <x5> p p7

x2 p4 → p5 p2 <x6> p p8

x3 p6 p3 <x1> p p9

x4 p4 <x2> p0

x5 p1 p5 <x2> p p4

x6 p2 p6 <x3>

x7 p7

x8 p8

x9 p9

... ...

ROB

valid complete exception op p1 PR1 p2 PR2 Rd LPRd PRd

c lw p p3 x2 p4 p5

3

Name: ____________________________

Question 1.C (252 only, 5 points)

In the previous question, mispredictions and exceptions used the same procedure
for restoring precise state. Is this an acceptable design for a high-performance
core? Why or why not? If not, what is an alternative way of handling
mispredictions?

4

Name: ____________________________

Question 2: Branch Prediction [20 points]
For the following question, we are interested in the performance of branches
when executing the following code. For each part, assume that N = 4 and the
array A has the values {1, 7, 2, 5}.

C code RISC-V Assembly

for (int i = 0; i < N; i++) {

 int b = A[i];

 if (b >= 5)
 c += b;

 if (b < 4)
 c -= b;

}

 li x1, A

 li x4, N

loop:

 lw x2, 0(x1)
 li x5, 5
 blt x2, x5, skip1
 add x3, x3, x2

skip1:
 li x5, 4
 bge x2, x5, skip2
 sub x3, x3, x2

skip2:
 addi x1, x1, 4
 addi x4, x4, -1
 bnez x4, loop

5

Name: ____________________________

Question 2.A (CS152 Only, 5 points)

Fill out the table to show what the predictions will be if the branch predictor is a
BHT indexed by PC with two-bit counters. If the most-significant bit of a counter
is 1, the predictor predicts taken. Otherwise it predicts not taken. The counters
are initialized to weakly not-taken (01). The Counter column in the table shows
the state of the counter before the branch is executed. Assume that the BHT is
large enough that no aliasing of instruction addresses will occur.

Instruction Counter Prediction Actual

i=0 blt x2 x5, skip1 01 not taken taken

bge x2, x5, skip2 01 not taken not taken

bnez x4, loop 01 not taken taken

i=1 blt x2 x5, skip1 not taken

bge x2, x5, skip2 taken

bnez x4, loop taken

i=2 blt x2 x5, skip1 taken

bge x2, x5, skip2 not taken

bnez x4, loop taken

i=3 blt x2 x5, skip1 not taken

bge x2, x5, skip2 taken

bnez x4, loop not taken

What is the prediction accuracy for each branch? What is the prediction accuracy
overall?
blt:
bge:
bnez:
overall:

6

Name: ____________________________

Question 2.B (5 points)

Now assume we change the branch predictor to a BHT indexed by PC and a single
bit of global history. Assume the global history is initialized to 0, the counters are
initialized to 01 (weakly not-taken), and there is no aliasing. The Counter columns
in the table show the state of the counters before the branch is executed. Fill out
the table with the predictions. (3 points for table, 2 points for accuracy)

Instruction Global
History

Counter
0

Counter 1 Prediction Actual

i=
0

blt x2 x5, skip1 0 01 01 not taken taken

bge x2, x5, skip2 1 01 01 not taken not taken

bnez x4, loop 0 01 01 not taken taken

i=
1

blt x2 x5, skip1 not taken

bge x2, x5, skip2 taken

bnez x4, loop taken

i=
2

blt x2 x5, skip1 taken

bge x2, x5, skip2 not taken

bnez x4, loop taken

i=
3

blt x2 x5, skip1 not taken

bge x2, x5, skip2 taken

bnez x4, loop not taken

What is the prediction accuracy for each branch? What is the prediction accuracy
overall?

blt:
bge:
bne:
Overall:

7

Name: ____________________________

Question 2.C (5 points)

If you run this code with a large array containing uniformly randomly
distributed values, which branch do you expect to get the most benefit from
global history and why?

Question 2.D (CS 252 Only, 5 points)

Explain the motivation for using both BHT and BTB branch-prediction structures
in the same implementation.

8

Name: ____________________________

Question 3: Load/Store Units [20 points]
Question 3.A (10 points)

Table 3.1 shows the current state of the store queue in an out-of-order processor. The
instruction number indicates the order of instructions in the program, with lower
numbers being earlier in program order. Table 3.2 shows the values stored in the data
cache.

Assume that all stores and loads are for the full 32-bit word and aligned to 32 bits. The
processor uses conservative out-of-order load/store execution. For each of the following
loads, can the load be completed under this model? If so, what value does it read? Fill
out Table 3.3 with your answers.

Instruction
Number

Address Value

3 0x1000 0xF00D3ABC

6 0x2000 Unknown

11 Unknown Unknown

15 0x1000 0xDEADBEEF

17 Unknown Unknown

Table 3.1 Store Queue

Address Value

0x1000 0xAACCBDAF

0x2000 0xBADE2140

0x3000 0x1234ABCD

Table 3.2 Data Cache

9

Name: ____________________________

Instruction
Number

Address Can execute? Value

4 0x2000

5 0x1000

8 0x2000

13 0x1000

16 0x1000

18 0x3000
Table 3.3 Load Queue

Question 3.B (5 points)

Now assume that the processor has address speculation and assumes that unknown
addresses in the store queue will be different from addresses of pending loads. Which
of the loads that couldn’t be executed in Question 3.A can now be speculatively issued?
Give the instruction numbers. What are their speculative values?

Question 3.C (5 points)

After the loads are speculatively issued, store 11 turns out to have address 0x3000 and
store 17 turns out to have address 0x1000. Which speculative loads were mistakenly
issued in Question 3.B? How do we recover from mis-speculation?

10

Name: ____________________________

Question 4: VLIW Machines [15 points]

In this problem, we consider the execution of a code segment on a VLIW processor. The code
we consider is the IMAX kernel, which finds the maximum value and its index in the list.

for (i = 0 ; i < N ; i++) {
 if (max < l[i]) {
 idx = i;
 max = l[i];
 }
}

t0: i, s0: idx, f0: max, a0: N, a1: pointer of l[i]
loop: fld f1, 0(a1) # load l[i]

flt.d t1, f0, f1 # set if max < l[i]
fmax.d f0, f0, f1 # max = max < l[i] ? l[i] : max
beqz t1, skip # if max >= l[i], jump to skip
addi s0, t0, 0 # update idx

skip: addi a1, a1, 8 # bump l
addi t0, t0, 1 # increment i
bltu t0, a0, loop # loop

Now we have a VLIW machine with five execution units:
● two ALU units, latency one cycle, also used for branch operations.
● one memory unit, latency two cycles, fully pipelined, each unit can perform either a

store or a load.
● two FPU units, latency three cycles, fully pipelined, both can perform flt.d and

fmax.d.

Assume there are no exceptions during the execution.

11

Name: ____________________________

A. (5 points) Schedule instructions for the VLIW machine in Table 4-1 without loop
unrolling and software pipelining.

Label ALU1 ALU2 MEM FPU1 FPU2

Table 4-1: VLIW Scheduling without Optimizations

12

Name: ____________________________

B. (10 points) Schedule instructions for the VLIW machine with software pipelining but
without loop unrolling in Table 4-2 including the prologue and the epilogue. You do
not need to find the optimal scheduling.

Label ALU1 ALU2 MEM FPU1 FPU2

Table 4-2: VLIW Scheduling with Software Pipelining

13

Name: ____________________________

Question 5: Vector Machines [15 points]
A. (CS152 Only ,15 points) In this problem, we will vectorize the following code with the

RISC-V Vector ISA:

double A[N+20], B[2*N];
...
for (i=0; i<N; i++) {
 A[i] = A[i+20] + B[2*i]*B[2*i+1];
}

Fill out the blanks below (the code spans to the next page).

a0: N, a1: A pointer, a2: B pointer
v0, v2-v7: 64-bit float vector
v1: 8 bit int vector for mask

loop: # set VL for loop, t0 = VL

load A[i+20]

load B[2*i], load B[2*i+1]

Compute A[i+20] + B[2*i]*B[2*i+1]

14

Name: ____________________________

Store A[i]

sll t2, t0, 3

add a1, a1, t2 # bump A

sll t3, t0, 4

add a2, a2, t3 # bump B

sub a0, a0, t0 # decrement N

bnez a0, loop # loop

15

Name: ____________________________

B. (CS 252 Only) We have a vector machine where MAXVL = 64. There are three vector
functional units (a multiply unit, an add unit, and a load/store unit) each with 8 lanes and
each unit (multiply, add, and load/store) is fully pipelined with a 6-cycle latency.

i) (5 points) What is the minimum vector instruction bandwidth (vector instructions issued per
clock cycle) to keep all the functional units busy?

ii) (5 points) What if the MAXVL was 16?

iii) (5 points) How does the minimum vector instruction bandwidth change if the pipeline
latency increases to 8 cycles?

16

Name: ____________________________

Question 6: Multithreading [10 + 5 points]
In this question, we consider a program that computes a running average across
a long stream.

C code Assembly

float *stream = …;

float *stream_end = ...;

float avg = 0.0f;
float total = 0.0, n = 0.0;

while (stream != stream_end) {
 total += *stream;
 n += 1.0;
 avg = total / n;
 stream++;

}

// x1 = stream, x2 = stream_end
// f0 = avg, f1 = total
// f2 = n, f3 = 1.0
loop:

 flw f4, 0(x1)
 fadd.s f2, f2, f3
 fadd.s f1, f1, f4
 fdiv.s f0, f1, f2
 addi x1, x1, 4
 bne x1, x2, loop

We run this on a multithreaded in-order core with no data cache, perfect branch
prediction, and no threading overhead. The latencies of each type of instruction
are as follows.

Load/store 16 cycles

Float to integer conversion 2 cycles

Floating-point addition 5 cycles

Floating-point multiply 3 cycles

Floating-point division 7 cycles

Integer operations 1 cycle

17

Name: ____________________________

Question 6.A (2 points)

How many threads do we need to run without pipeline stalls if the processor
switches to another thread every cycle using fixed round-robin scheduling?
Please show your work.

Question 6.B (4 points)

How many threads do we need to run without stalling if the processor only
switches threads when the next instruction will stall due to a data dependency?
Show your work.

18

Name: ____________________________

Question 6.C (2 points)

In the case where we switch threads every cycle, can we reduce the number of
threads needed to run without pipeline stalls by reordering instructions? How
can we do this and what is the new number of threads?

Question 6.D (2 points)

In the case where we switch only if there is an unmet data dependency, can we
reduce the number of threads needed to run without stalls by reordering
instructions? How can we reorder the instructions and what is the new number
of threads?

19

Name: ____________________________

Question 6.E (CS 252 Only, 5 points)

For each following resources, indicate whether or not they are shared in an SMT
processor.

Program Counter

Fetch Unit

Rename Table

Physical Register File

Issue Window

Functional Units

ROB

20

