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CS 152 Computer Architecture and Engineering 
CS 252 Graduate Computer Architecture 

 
Midterm #1 

March 4th, 2019 
Professor Krste Asanović 

 
Name:______________________ 
SID:______________________ 

I am taking CS152 / CS252 
(circle one) 

 
This is a closed book, closed notes exam. 

80 Minutes, 19 pages. 
 

Notes: 
• Not all questions are of equal difficulty, so look over the entire exam! 
• Please carefully state any assumptions you make. 
• Please write your name on every page in the exam. 
• Do not discuss the exam with other students who haven’t taken the exam. 
• If you have inadvertently been exposed to an exam prior to taking it, you 

must tell the instructor or TA. 
• You will receive no credit for selecting multiple-choice answers without 

giving explanations if the instructions ask you to explain your choice. 
 

Question CS152 Point Value CS252 Point Value 
1 15 15 
2 20 -- 
3 15 -- 
4 15 -- 
5 15 15 

Grad Supplement -- 50 
TOTAL 80 80 
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Problem 1: (15 Points) Iron Law of Processor Performance 
 
Mark whether the following modifications will cause each of the first three categories to 
increase, decrease, or whether the modification will have negligible effect. Assume all other 
parameters of the system are unchanged whenever possible. Explain your reasoning. 
 
For the final column “Execution Time”, mark whether the following modifications increase, 
decrease, have negligible effect, or whether the modification will have a potentially significant 
but ambiguous effect. Explain your reasoning. If the modification has an ambiguous effect, 
describe the tradeoff in which it would be a significantly beneficial modification or in which it 
would a significantly detrimental modification (i.e., as an engineer would you suggest using the 
modification or not and why?). 
 
 
  Instructions / 

Program 
Cycles / 

Instruction 
Seconds / Cycle Execution Time 

a) Improving branch 
predictor accuracy.  

    

b) 

 
Adding a vector 
(SIMD) extension to 
the ISA 
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c) Adding an explicit 
load-delay slot.  

    

d) 
Adding software-
prefetching 
instructions. 

    

e) 

Adding another level 
in the page-table 
hierarchy. 
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Problem 2: (20 Points) Microcoding (CS152 ONLY) 
 
In this problem, we explore microprogramming by writing microcode for a bus-based 
implementation of the RISC-V machine. This microarchitecture is largely the same as the one 
described in Handout #1, Problem Set 1, and Lab 2, with a few key differences. For clarity, we 
have reproduced the full microarchitectural diagram with new control signals in boldface. 

 
New control signals 

• ImmSel may take the value zero; this puts a zero on the bus when enImm is high 

• Memory now receives an additional MemSize control signal, which takes the value 0, 1, 
or 2 to mean a 8-, 16-, or 32-bit load or store. Assume that load values are zero-extended, 
and that the upper bits are ignored when performing stores of less than 32 bits. 

• Memory may take multiple cycles to return—make sure to use spin states! 
The final solution should be efficient with respect to the number of microinstructions used. Make 
sure to use logical descriptions of data movement in the “pseudocode” column for clarity. Credit 
will be awarded for realizing that signals may take a “don’t care” or X value, but this is less 
important than producing a correct implementation! 
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A Cheat Sheet for the Bus-based RISC-V Implementation 
For your reference, we’ve also included the actual bus-based datapath as well as rehash of some 
important information about microprogramming in the bus-based architecture. 

Remember that you can use the following ALU operations: 
	

ALUOp ALU Result Output 
COPY_A A 
COPY_B B 
INC_A_1 A+1 
DEC_A_1 A-1 
INC_A_4 A+4 
DEC_A_4 A-4 
ADD A+B 
SUB A-B 
SLT Signed(A) < Signed(B) 
SLTU A < B 
Table H1-2: Available ALU operations 

 
Remember that the µBr (microbranch) column in Table H1-3 represents a 3-
bit field with six possible values: N, J, EZ, NZ, D, and S. 

• If µBr is N (next), then the next state is simply (current state + 1).  
• If it is J (jump), then the next state is unconditionally the state specified in the Next State 

column (i.e., it’s an unconditional microbranch).  
• If it is EZ (branch-if-equal-zero), then the next state depends on the value of the ALU’s 

zero output signal (i.e., it’s a conditional microbranch). If zero is asserted (== 1), then the 
next state is that specified in the Next State column, otherwise, it is (current state + 1). 

• NZ (branch-if-not-zero) behaves exactly like EZ, but instead performs a microbranch if 
zero is not asserted (!= 1). 

• If µBr is D (dispatch), then the FSM looks at the opcode and function fields in the IR and 
goes into the corresponding state. 

• If µBr is S, the µPC spins if busy? is asserted, otherwise goes to (current state +1). 
 
 
Guidelines for enable signals: 

• Only one source of data can drive the bus in any cycle 
• Don’t worry about marking any of the en__ signals as don’t care. However, other types 

of signals should be marked as don’t care where applicable. 
• Two control signals determine how the register file is used during a cycle: RegWr and 

enReg. RegWr determines whether the operation to be performed, if any, is a read or a 
write. If RegWr is 1, then it is a write; otherwise it’s a read. enReg is a general enable 
control for the register file. If enReg is 1, then the register reads or writes depending on 
RegWr. If enReg is 0, then nothing is done, regardless of the value of RegWr. 

• MemWr and enMem function in an analogous way for the memory. 
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2.A (15 points) Implement a strchridx instruction 
Given a string of single-byte characters, find the first occurrence of a specified character. Return 
the index of the first occurrence or -1 if the character does not appear in the string. If bits [31:8] 
of rs2 are not all zero, the behavior of the instruction is undefined. When the instruction commits, 
rs1 and rs2 (and all other architectural registers other than rd) must have their original values! 

strchridx rd, rs1, rs2 

Arguments: rs1 A pointer to the null-terminated string s 

 rs2 The character c to search for 

Result: rd The index of the first appearance of c in s, or -1 if it doesn’t appear 

For simplicity, you may assume that rd != rs1. 

Fill in the microcode table on the next page. 
 

1.B (5 Points) Performance of your strchridx implementation 
How many cycles does your strchridx instruction take for each of the following inputs? 
Assume that all memory accesses complete in a single cycle (just for the CPI calculation – i.e., 
you must still use spin states). Include all the cycles from executing STRCHRIDX0 to the 
instruction that jumps back to FETCH0. 

 
char *s1 = “hello world”; 

// Case 1 

strchridx(s1, ‘h’); 

 

 

 

 

// Case 2 

strchridx(s1, ‘d’); 

 

 

 

 

// Case 3 

strchridx(s1, ‘q’); 
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State PseudoCode IdIR 
Reg 

Sel 

Reg 

Wr 

en 

Reg 
ldA ldB ALUOp 

en 

ALU 

ld 

MA 

Mem 

Wr 

en 

Mem 

Mem 

Size 

Imm 

Sel 

en 

Imm 
uBr 

Next 

State 

FETCH0	 MA <- PC; 

A <- PC; 
* PC 0 1 1 * * 0 1 * 0 * * 0 N * 

	 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * * 0 S * 

	 PC <- A+4; 

dispatch 
0 PC 1 1 * * INC_A_4 1 * * 0 * * 0 D * 

…                  

NOP0 uBr to FETCH0 * * * 0 * * * 0 * * 0 * * 0 J FETCH0 

STRCHRIDX0                  
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Problem 3: (15 Points) 5-Stage Pipelines (CS152 ONLY)	
 

 
 
3.A (2 Points) Speculation in the 5-stage pipeline 
Even a simple, in-order pipelined processor makes use of speculative execution. For the 5-stage 
pipeline above, assume that there is no virtual memory, and that misaligned accesses are checked 
in the Execute stage. For the instruction sequence below, complete the execution diagram and 
circle the cycles in which the second add is being executed speculatively. Justify your response! 

Clock Cycle 0 1 2 3 4 5 6 7 8 9 
add x1, x2, x0 F D X M W      
lw x3, 0(x2)           
add x3, x4, x5           

 

F D X M W

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

Register File

L1 I$

PC

ALU

Bypass M
ux

Bypass M
ux

W

W
B Data M

ux

addr
wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1-4 are existing sources of 
bypass data for bypass muxes

BP1
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3.B (1 Point) Load-use delay 
Given the 5-stage pipeline above, how long is the load-use delay? Answer in terms of how many 
bubbles must be added between a load and a dependent register-register instruction that is 
fetched right after the load. 

 
 

 

3.C (4 Points) Modifying the load-use delay 
 

Consider the bypass path shown in bold below. 

 
How would this bypass path affect CPI? Seconds per cycle? 

 
 

 
 

Would you recommend adding this bypass path? Justify your response. 
	  

F D X M W

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

Register File
L1 I$

PC

ALU
Bypass M

ux
Bypass M

ux

W

W
B Data M

ux

addr
wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1

BP5: extra bypass path to X

Bypass M
ux

Bypass M
ux
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3.D (2 Points) RAW hazards through memory 
Consider the following instruction sequence. 
sw x1, 0(x2) 

lw x3, 0(x2) 

 
Assume a “magic memory” that reads and writes in a single cycle, along with the same baseline 
microarchitecture from 2.A. Draw a pipeline execution diagram and depict the RAW dependency 
with an arrow. Should any bubbles be inserted for correct execution? How many? 

 

Clock Cycle 0 1 2 3 4 5 6 7 8 9 
add x4, x4, x5 F D X M W      
sw x1, 0(x2)           
lw x3, 0(x2)           

 
 

 
 
 
3.E (6 points) Multi-cycle writes 
 
Now consider a slightly more realistic memory system with caches. These parameters are used 
throughout all of (2.D). Cache misses are ignored throughout this question. 
 

• L1 cache read hits complete in a single cycle 
• L1 cache writes have a two cycle latency to complete 
• L1 Reads and writes still only have a single cycle occupancy 

 
 
 
When reusing the existing pipelined datapath with this new cache, no new structural hazards are 
added, as the write occupancy is still one cycle. Therefore, this baseline datapath can 
accommodate the two-cycle write with no extra pipeline stages. 
 
 
i) Describe a new type of hazard that will need to addressed in the pipeline and give an 
example instruction sequence that will cause such a hazard to occur. 
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ii) Using the above diagram as a template, draw a new interlock that makes the following 
instruction sequence execute correctly. You may add new gates and/or basic arithmetic 
units (adders, comparators, etc). For full credit, minimize the overall impact on CPI. Wire 
the Boolean interlock signal to one or more of the bubble_<stage> signals, which insert 
a bubble in that stage on the current cycle; this bubble ends up ahead of the instruction 
that was in that stage. You may use labeled endpoints as “tunnels” to neatly connect wires 
without clutter. How many bubbles does it add for the following sequence? 
 
sw x1, 0(x2) 

lw x3, 0(x2) 

 

F D X M W

store_data_M

is_load_M
is_store_M

store_data_W

is_load_W
is_store_W

is_load_X
is_store_X

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

R
egister File

L1 I$

PC

ALU

Bypass M
ux

Bypass M
ux

W

W
B Data M

ux

addr
wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1

Hazard & Bubble Controller

bubble_X bubble_M
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iii) Using the above diagram as a template, draw a new bypass path that makes the 
following instruction sequence execute correctly with zero bubbles. You may add new gates 
and/or basic arithmetic units (adders, comparators, etc). You may also add muxes on an 
existing wire by drawing the mux over the wire. You may use labeled endpoints as 
“tunnels” to neatly connect wires without clutter. 
 
sw x1, 0(x2) 

lw x3, 0(x2) 

  

F D X M W

store_data_M

is_load_M
is_store_M

store_data_W

is_load_W
is_store_W

is_load_X
is_store_X

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

Register File

L1 I$

PC

ALU

Bypass M
ux

Bypass M
ux

W

W
B Data M

ux

addr
wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1

Bypass
0         1sum

Example: muxing existing wire with 
tunneled, named signal. New items in bold.
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Problem 4: (15 Points) Software Optimization (CS152 ONLY) 
 
In this problem, we’ll consider SAXPY kernel operating on 32-bit integer values: 
 
for (i = 0; i < len; i++) { 
 y[i] = a * x[i]+ y[i] 
} 
 
In this question, we’ll study the performance of this kernel on two different  
microarchitectures. Specifically, we’re interested in both the CPI and how many cycles-per-
element (CPE) the kernel takes to execute.  
 
Consider the following RV32IM assembly implementation of this kernel: 
 
// x1 holds pointer to x 
// x2 holds pointer to y 
// x3 holds a 
// x4 holds len 
 
  add x5, x0, x0 
LOOP: bge x5, x4, DONE 
  lw x6, 0(x1) 
  mul x6, x6, x3 
  lw x7, 0(x2) 
  add x6, x6, x7 
  sw x6, 0(x2) 
  addi x1, x1, #4 
  addi x2, x2, #4 
  addi x5, x5, #1 
  j LOOP 
DONE:   
 
 

A)  (1 Point) How many instruction bytes are fetched per loop iteration? 
 
 
 
 
 

B)  (1 Point) How many data bytes are loaded per loop iteration?  
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C) (8 Points) Fill out the provided pipeline diagram on page 15 for a classic 5-stage in-order 
pipeline with full-bypassing, for the first 12 dynamic instructions. Assume no cache 
misses, and no branch prediction, and len > 2. Note that unconditional branches are 
resolved in D. What does CPI converge to as we increase the number of iterations 
executed? CPE? You may need to wrap instructions back around to cycle 0 in the 
pipeline diagram.  

 
 
 
 

 
 

  

F D X M W

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

Register File

L1 I$

PC

ALU

Bypass M
ux

Bypass M
ux

W

W
B Data M

ux

addr
wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1-4 are existing sources of 
bypass data for bypass muxes

BP1
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D) (3 Points) Give a reordering of the assembly that achieves a lower CPE, without adding 

new instructions. What is the CPE of the reordering?  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E)  (2 Points) Name two other optimizations you could employ to improve the CPE 
(assuming you could completely rewrite the assembly implementation). Explain why they 
would reduce CPE for the provided kernel. You do not have to write the code in this part. 
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Problem 5: (15 Points) Virtual Memory and Aliasing  
 

A) (2 Points) You are asked to design a virtually indexed, physically tagged cache. A page 
is 4096 bytes. The cache must have 64 lines of 256 bytes each. What associativity must 
the cache have in order for there to be no aliasing? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

B) (3 Points) Assume the cache is direct-mapped, and suppose an alias exists for the 
physical address 0x80007100. Which sets in the L1 could contain the aliased entry? The 
sets are indexed starting from zero. 
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C) (2 Points) To detect aliases, suppose we implement a table which has a single row per L1 
cache line. Its structure is given below:  

 
 

 
 

On a miss in the L1 cache, the table is indexed using the physical address bits in positions 
corresponding to the cache’s index bits. If the physical tag matches and the entry is valid, 
the aliased line is moved into the new set, and the VPN bits in the table are updated. 
Otherwise, the L1 line pointed to by the table entry is evicted, and the table entry is 
updated with the physical tag and VPN bits of the missing line.  
 
For the cache organization of part B, which bits, if any, of the VPN must be stored in the 
table to resolve aliases? Why?  

 
 
 
 
 
 
 
 

D) (3 Points) Suppose we want to load from two 4KiB arrays. First, we load every entry 
from foo, which is stored at virtual address 0x8000_0000, and then every entry from 
bar, which is stored at virtual address 0x8000_1000. If virtual addresses 0x8000_0000 
and 0x8000_1000 map to physical addresses 0x3000 and 0x7000 respectively, how many 
bytes of foo will reside in L1 cache once we’ve finished loading from bar? Explain.  
 
 
 
 
 
 
 

ValidVPN[?:?]Phys.Tag

=

Alias Set
 Index

Alias
Exists

Miss Physical Address

Block Offset (8 bits)Tag (18 bits) Table Index (6 bits)
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E) (5 Points) To fix this, we could make the table associative. How many ways would you 
add and how many rows would you need to ensure you can always resolve aliases while 
completely removing the behavior of part D? Explain.  


