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CS 152: Computer Architecture and Engineering 

CS 252: Graduate Computer Architecture 

 

Midterm #2 

April 17th, 2019 

Professor Krste Asanović 

 

Name:______________________ 

SID:______________________ 

I am taking CS152 / CS252 

(circle one) 

 

This is a closed book, closed notes exam. 

80 Minutes, 19 pages. 

 
Notes: 

• Not all questions are of equal difficulty, so look over the entire exam! 

• Please carefully state any assumptions you make. 

• Please write your name on every page in the exam. 

• Do not discuss the exam with other students who haven’t taken the exam. 

• If you have inadvertently been exposed to an exam prior to taking it, you 

must tell the instructor or TA. 

• You will receive no credit for selecting multiple-choice answers without 

giving explanations if the instructions ask you to explain your choice. 
 

Question CS152 Point Value CS252 Point Value 

1 20 16 

2 20 -- 

3 20 20 

4 20 20 

Grad Supplement -- 20 

TOTAL 80 76 
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Problem 1: Vector Machines and Company  

 
Multiple choice: Check one unless otherwise noted 

 

 
A) (1 Point) What sort of parallelism do vector machines primarily exploit?  

 

 

[   ]  ILP   [   ]  DLP  [   ]  TLP 

 

 

B) (1 Point) What architectural features to exploit parallelism are present in a modern, 

general-purpose processor (e.g. x86 server processor) (check all that apply). 

 

 

[   ] SIMD [   ]  Multi-threading [   ]  Superscalar Execution [   ] VLIW [   ] Pipelining 

 

 

 

C) (1 Point) Which technique do both GPUs and vector machines use to remove per-

element control hazards?  

 

 

[   ]  Predication   [   ]  Trace Scheduling  [   ]  Branch Prediction 

 

 

 

D) (3 Points) Short Answer: Give one distinguishing feature of a traditional vector 

architecture (e.g. Cray-style vectors) versus a packed-SIMD architecture (e.g. Intel AVX)? Give 

one advantage of each approach.  
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E) (12 points for 152, 8 points for 252) Vectorize the following double-precision C code 

using the RISC-V vector specification described in lab 4. See appendix A for the vector 

instruction set listing.  

 
for (i = 0; i < N; i++) { 

D[i] = A[i] + B[i] * C[i]; 
} 

 

Assume: 

• Vector registers v0 – v8 have been configured to hold vectors of double-precision floats. 

• Register a0 holds an integer N; a1 – a4 hold double* A, B, C and D, respectively. 

• A, B, C, and D do not overlap. 

• Feel free to use registers a5 – a7 to hold scalar values n 

 
 

stripmine_loop: 

 # Your code begins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 bne  ______, _______, stripmine_loop 

# Your code ends 

 

 

F) (2 points) Name a vector-specific microarchitectural technique one could apply to 

improve throughput on the code above.  
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Problem 2: VLIW 

 
In this problem, we will optimize a vector-vector add kernel for a VLIW machine. 
 

 

 

// C implementation 

void vvadd(double restrict *A, 

           double restrict *B, 

           double restrict *C, 

           int n) 

{ 

  for (int i = 0; i < n; i++) 

    C[i] = A[i] + B[i]; 

} 

 

 

# Naive RISC-V implementation 

# t0: i, a0: A, a1: B, a2: C, a3: n 

# Assume n > 0, t0 = 0 

       ... 

loop:  fld    f0, 0(a0) 

       fld    f1, 0(a1) 

       fadd.d f0, f0, f1 

       fsd    f0, 0(a2) 

       addi   a0, a0, 0x8 

       addi   a1, a1, 0x8 

       addi   a2, a2, 0x8 

       addi   t0, t0, 0x1 

       bne    t0, a3, loop 

done:  jr     ra 

 

 

The program will be mapped to a VLIW machine with the following specs: 

• Two ALU units with one-cycle latency; ALU1 is used for branches 

• One fully-pipelined load unit with a two-cycle latency 

• One fully-pipelined store unit. For this question, ignore the latency of memory-memory 

dependencies and assume C does not overlap with A or B. 

• One fully-pipelined FPU with a three-latency 

• There are no interlocks, and all latencies are explicitly exposed in the ISA 

 

Assumptions: 

• Register t0 is initialized to zero before the start of your code, and n > 0. 

• There are no exceptions or interrupts in the execution of the program. 

• You may assume that n is a very large number. 
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A)  (8 points, 152 ONLY) Schedule the algorithm on the VLIW machine without unrolling or software pipelining. Try to minimize 

the number of cycles, but prioritize correctness! 

 

Label ALU1 ALU2 Load Store FP 

init: beq a3, r0, done addi t0, r0, 0    
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B) (12 points, 152 ONLY) Schedule the algorithm on the VLIW machine using software pipelining (you do not need to unroll the 

loop). Try to minimize the number of cycles, but prioritize correctness! 

 

Label ALU1 ALU2 Load Store FP 

init: beq a3, r0, done addi t0, r0, 0    
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Problem 3: Unified Physical Register File Out-of-Order Machines 

 
Throughout this question, assume the following machine specifications: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The machine can fetch, dispatch, issue, and commit at most one instruction per cycle. 

• The processor runs the RISC-V instruction set with the F and D extensions. 

• Assume every load hits in the single-cycle-hit L1 D$ (indicated as DC in the pipeline). 

• Register renaming follows the Unified Physical Register File scheme. 

• Unless otherwise directed, assume there are no bypass paths for data. 

• Instructions are written into the ROB at the end of the DEC/REN1 stage. 

• Instructions are written into the issue window at the end of the REN2/DIS stage. 

• Instructions are released from the issue window in the ISS stage. 

• Commit is handled by a decoupled unit that looks at the ROB entries. 

• Jump instructions issue and complete immediately on the same cycle that they dispatch. 

• Assume all jump targets are perfectly predicted. 

• Instructions may issue as soon as the same cycle that the writer of their last outstanding 

operand is in the writeback stage. 

• Ignore structural hazards on the register file ports 

• Each functional unit has its own issue window, separate from the ROB 

  

 

 

MUL / 

DIV 

 

ARITH / 

BRANCH 
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Multiple Choice 
(mark ALL that apply!) 

 

 

 

A) (2 points) Which of the following fields are part of an issue window entry in this machine?  

[   ] Physical destination register 

[   ] Architectural destination register 

[   ] Last physical destination register 

[   ] Source present bits 

[   ] Operand physical register specifiers 

[   ] Operand data 

[   ] A flag to mark if the instruction has caused an exception 

 

B) (1 point) An instruction in an issue window is guaranteed to also be in the ROB. 

[   ] True  [   ] False 

 

C) (1 point) An instruction in the ROB is guaranteed to also be in an issue window. 

[   ] True  [   ] False 

 

D) (1 point) An instruction enters the issue window in what phase of execution? 

[   ] Dispatch  [   ] Issue [   ] Fetch 

 

 

E) (1 point) In a data-in-ROB design, which of the following acts as a source for operands?  

[   ] Architectural register file 

[   ] Physical register file 

[   ] ROB 
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F) (14 points) Consider the following code sequence that begins at address 0x00010000 

 
loop:  fld    f0, 0(a0) 

       fld    f1, 0(a1) 

       fadd.d f0, f0, f1 

       fsd    f0, 0(a2) 

       addi   a0, a0, 0x8 

       addi   a1, a1, 0x8 

       addi   a2, a2, 0x8 

       addi   t0, t0, 0x1 

       bne    t0, a3, loop 

 

Assume that the machine enters this loop with all instructions fetched, zero valid entries in the 

ROB, and the following initial rename table and free list contents before the first fld enters the 

ROB. Dequeue free list entries from the top. 

 

Unused architectural registers are omitted from the rename table for clarity. 

 

Arch. register Phys. register 

a0 p1 

a1 p5 

a2 p33 

t3 p17 

t0 p41 

f0 p62 

f1 p28 

 

Free List 

 

 

p4 

p55 

p18 

p30 

p39 

p11 

p59 

p60 
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Now consider the case in which the fsd takes an exception. Fill in the following table which 

describes the execution of each instruction) for eight instructions, beginning with the first fld. In 

the “Time” columns, fill in the cycles in which the instruction dispatches, issues, completes, and 

commits (if it commits), respectively. 
 

PC 
Physical Register Specifiers Cycle # 

PRd LPRd PR1 PR2 Dispatch Issue Complete Commit 

0x00010000         

0x00010004         

0x00010008         

0x0001000C         

0x00010010         

0x00010014         

0x00010018         

0x0001001C         
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Problem 4: Branch Prediction  

 
A) (1 Point) Which of the following language-level constructs are typically compiled to use 

register indirect jumps? Check all that apply. 

 

[   ]  Case statements     

[   ]  Subroutine returns  

[   ]  Dynamically dispatched function calls 

 

 

B) (1 Point) How many bits of global history are required to perfectly predict the direction 

of the branch at label F? Check one answer. 

 
if (a == 2)  // A 

  b = a;     // B 

if (b > c) { // C 

  d = 0;     // D 

} else { 

  d = 1;     // E 

} 

if (d != 0)  // F 

  e = 0;     // G 

...          // H 

A: li   t0, 0x2 

   beq  a0, t0, C 

B: mv   a1, a0 

C: blt  a1, a2, E 

D: li   a3, 0x0 

   j    F 

E: li   a3, 0x1 

F: beq  a3, r0, H 

G: li   a4, 0x0 

H: ... 

 
 

   

[   ]   0   [   ]  1  [   ]  2   [   ]  3 

  

 

 

C) (2 Points) Why don’t machines speculatively execute down both branch directions? 
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For the remainder of this problem, we’ll consider the following code, which counts the number 

of false to true transitions in an array of C booleans.  

 

These code listings are provided in appendix B.  

 

bool array[N] = {…};  

int posedge = 0; 

for (int i = 1; i < N; i++) {  

  if (array[i] && !array[i-1]) 

 posedge++;    

} 

 

Specifically, we’ll consider the following assembly implementation of the loop above. 

  

// a0 holds N 

// a1 holds array 

li       a2, 0         // Initialize posedge 

add      a3, a1, a0    // Set up loop bound 

loop:  

addi     a1, a1, 1     // Bump pointer  

bge      a1, a3, done  // Check loop condition  

lbu      a4,  0(a1)    // Load current element (array[i]) 

lbu      a5, -1(a1)    // Load previous element (array[i-1]) 

sltu     a4, x0, a4    // Set a4 to 1 if nonzero, else zero a4 

bgeu     a5, a4, loop  // Branch if not posedge (prev nonzero or equal) 

addi     a2, a2, 1     // Increment posedge 

j loop  

done:  
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D) (7 points) Branch History Table (BHT) 

The processor that this code runs on uses a 512-entry branch history table (BHT), indexed by PC 

[10:2]. Each entry in the BHT contains a 2-bit counter, initialized to the 10 state (weakly taken).  

Each 2-bit counter works as follows: the state of the 2-bit counter decides whether the branch is 

predicted taken or not taken, as shown in the table below. If the branch is actually taken, the 

counter is incremented (e.g., state 00 becomes state 01). If the branch is not taken, the counter is 

decremented. The counter saturates at 00 and 11 (a not-taken branch while in the 00 state keeps 

the 2-bit counter in the 00 state) 

State Prediction 

00 Not taken 

01  Not taken 

10 Taken 

11  Taken 

 

Assuming array = {0,1,0,1,0,1,0}, fill out the following tables. Each table corresponds to one 

branch and their respective BHT entries. Each row corresponds to one execution of the branch. 

Fill it out as follows:  

• For the Prediction column: use T for Taken and NT for Not Taken 

• For the Correct column: use Y to indicate a correct prediction and, N for incorrect  

• For the State column: write the state of the entry on that cycle {00, 01, 10, 11} 

Finally, fill out the total number of correct predictions in the boxes at the bottom of the table. 

The first two branches have been filled out for you.  

 

 

 

 

  

 

 

 

  

bge (loop condition) 

State Prediction 

(T / NT) 

Correct? 

(Y / N) 

10 T N 

01   

   

   

   

   

   

Total Correct: 
 

bgeu (skip condition) 

State Prediction 

(T / NT) 

Correct? 

(Y / N) 

10 T N 

01   

   

   

   

   

   

Total Correct:  
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E) (2 points) Suppose we keep two bits of global branch history which we use to index into 

one of four BHTs each with the same structure as the BHT in part A. What sort of branch 

correlation can this predictor resolve that the BHT in part A cannot?  

 

 

___________________ Correlation  

 

 

F) (7 points) Suppose we ran the code from part E on a long input array (N > 100000), and 

that the input array’s values alternate every element (i.e. {0, 1, 0, 1…}). Give the final state of all 

entries of the predictor that could be indexed by the two branches. If an entry is never indexed, 

leave it blank. How accurate is this predictor over the entire execution of the loop? Explain 

briefly how you arrived at your solution.  

Assume: 

• The global history register is initially 01, with the LSB indicating the most recent branch 

• All BHT entries are initially 10 (weakly taken), as in part E 

• N is odd 

 

BHT Entry BHT 0 BHT 1 BHT 2 BHT 3 

bge (loop)     

bgeu (skip)     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prediction accuracy: % 
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Appendix A: Vector Architecture for Question 1 
 

This instruction listing is identical to lab 4’s but with a setvl instruction that has identical 

semantics to the preprocessor macro provided in lab 4. This instruction first sets VL to                

min(maximum vector length, rs1); and then returns the new VL.  

 

Notes: 

- Omitting the final vector mask (vm) argument to all instructions is legal, and treats all 

elements i  < VL as active.  
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Appendix B: Code Listings for Question 4 
 

C implementation:  
 

bool array[N] = {…};  

int posedge = 0; 

for (int i = 1; i < N; i++) {  

  if (array[i] && !array[i-1]) 

 posedge++;    

} 

 

Assembly implementation under consideration.  

  

// a0 holds N 

// a1 holds array 

li       a2, 0         // Initialize posedge 

add      a3, a1, a0    // Set up loop bound 

loop:  

addi     a1, a1, 1     // Bump pointer  

bge      a1, a3, done  // Check loop condition  

lbu      a4,  0(a1)    // Load current element (array[i]) 

lbu      a5, -1(a1)    // Load previous element (array[i-1]) 

sltu     a4, x0, a4    // Set a4 to 1 if nonzero, else zero a4 

bgeu     a5, a4, loop  // Branch if not posedge (prev nonzero or equal) 

addi     a2, a2, 1     // Increment posedge 

j loop  

done:  

 

Reference input: {0, 1, 0, 1, 0, 1, 0} 

 

BHT entry state table and predictions.  

  

 

 

 

 

 

State Prediction 

00 Not taken 

01  Not taken 

10 Taken 

11  Taken 


