
CS 152 Computer Architecture and Engineering

CS 252 Graduate Computer Architecture

Midterm #1

March 2, 2020

Professor Krste Asanović

Name:______________________

SID:______________________

I am taking CS152 / CS252

(circle one)

This is a closed book, closed notes exam.

80 Minutes, 21 pages.

Notes:

• Not all questions are of equal difficulty, so look over the entire exam!

• Please carefully state any assumptions you make.

• Please write your name on every page in the exam.

• Do not discuss the exam with other students who haven’t taken the exam.

• If you have inadvertently been exposed to an exam prior to taking it, you

must tell the instructor or TA.

• You will receive no credit for selecting multiple-choice answers without

giving explanations if the instructions ask you to explain your choice.

Question CS152 Point Value CS252 Point Value

1 15 15

2 20 --

3 20 20

4 25 25

5 -- 20

TOTAL 80 80

Name: ______________________________

2

Problem 1: (15 Points) Iron Law of Processor Performance

Mark whether the following modifications will cause each of the first three categories to

increase or decrease, or whether the modification will have a negligible effect. Assume all

other parameters of the system are unchanged whenever possible. Explain your reasoning.

For the rightmost column, mark whether the modification will cause execution time to increase

or decrease, or whether the modification will have a negligible effect or a potentially significant

but ambiguous effect. Explain your reasoning. If the modification has an ambiguous effect,

describe the trade-off in which it might be significantly beneficial or in which it might be

significantly detrimental (i.e., as an architect, when would you suggest implementing the

modification or not and why?).

Be explicit if you are relying on any specific assumptions.

 Instructions /

Program

Cycles / Instruction Seconds / Cycle Execution Time

a)

Using wider

microcode in a

microcoded

machine

b)

Pipelining the

microcode

engine in a

microcode

machine

Name: ______________________________

3

c)

Adding an

instruction to

copy strings

d)

Adding an L2

cache between

the L1 cache and

DRAM

e)
Adding virtual

memory

Name: ______________________________

 4

Problem 2: (20 Points) Microprogramming (CS152 ONLY)

In this problem, you will write microcode for a bus-based implementation of a RISC-V machine.

This microarchitecture is identical to the one described in Handout #1 and Problem Set 1.

The final solution should be efficient with respect to the number of microinstructions used.

Make sure to use logical descriptions of data movement in the “pseudocode” column for clarity.

Credit will be awarded for optimizing signals using “don’t care” or ∗ values as appropriate, but

this is less important than producing a correct implementation.

Please comment your code clearly. If the pseudocode for a line does not fit in the space provided,

or if you have additional comments, you may write neatly in the margins.

For your reference, the single-bus datapath is reproduced here, as well as some important

information about microprogramming in the bus-based architecture.

IR A B

32 GPRs

+ PC

(32-bit)

RegWr

RegEn

MemWr

MemEn

MA

addr addr

data data

rs2
rs1

1

 1(RA)

RegSel

Memory

zero?

ALUOp

Opcode

rd

32(PC)

busy?

lRLd

IntRq

Bus

ALd BLd MALd

ALU

ALUEn

Immed
Select

ImmEn

ImmSel

Name: ______________________________

 5

Arithmetic Logic Unit:

ALUOp ALU Result Output

COPY_A A
COPY_B B
INC_A_1 A+1
DEC_A_1 A-1
INC_A_4 A+4
DEC_A_4 A-4
ADD A+B
SUB A-B
SLT Signed(A) < Signed(B)
SLTU A < B

Table Q2-1: Available ALU operations

Immediate Selector:

Five immediate types are supported by ImmSel: ImmI, ImmU, ImmS, ImmJ, and ImmB.

Microbranches:

The Br column represents a 3-bit field with six possible values: N, J, EZ, NZ, D, and S.

• N (next): The next state is simply (current state + 1).

• J (jump): The next state is unconditionally the state specified in the Next State column

(i.e., it’s an unconditional microbranch).

• EZ (branch-if-equal-zero): The next state depends on the value of the ALU’s zero output

signal (i.e., a conditional microbranch). If zero is asserted (𝑧𝑒𝑟𝑜 = 1), then the next state

is that specified in the Next State column, otherwise, it is (current state + 1).

• NZ (branch-if-not-zero): This behaves exactly like EZ but instead performs a

microbranch if zero is not asserted (𝑧𝑒𝑟𝑜 ≠ 0).

• D (dispatch): The FSM looks at the opcode and function fields in the IR and goes to the

corresponding state.

• S (spin): The PC stalls if busy? is asserted; otherwise, it goes to (current state +1).

Guidelines for Enable Signals:

• Only one source of data can drive the bus in any cycle.

• Don’t worry about marking any of the en__ signals as don’t care. However, other types

of signals should be marked as don’t care where applicable.

• Two control signals determine how the register file is used during a cycle: RegWr and

enReg. RegWr determines whether the operation to be performed, if any, is a read or a

write. If RegWr=1, then it is a write; otherwise it is a read. enReg is a general enable

control for the register file. If enReg=1, then the register reads or writes depending on

RegWr. If enReg=0, then nothing is done, regardless of the value of RegWr.

• MemWr and enMem function in an analogous way for the memory.

Name: ______________________________

 6

2.A (16 points) Implement a SWITCH instruction

The SWITCH instruction performs a multiway indirect branch, corresponding to the C code:

switch (index) {

 case 0: goto target_0;

 case 1: goto target_1;

 case 2: goto target_2;

 …

 case limit: goto target_last;

}

// Fall through if index is out of bounds

The SWITCH instruction has the following format:

SWITCH rs1, rs2, imm

The operands consist of two source registers and one B-type immediate:

rs1: Zero-based index to select a branch table entry

rs2: Pointer to a branch table in memory

imm: Limit, the index of the last table entry (𝑁 − 1)

The table operand (rs2) points to an array in memory with 𝑁 word-sized entries, each holding a

branch target address:

Address Content

table + 0 target_0

table + 4 target_1

table + 8 target_2

… …

table + (4×limit) target_last

The index (rs1) is compared with limit (imm) to check that it is within the table range. If index

≤ limit, then the processor branches to the address stored in the table[index] entry. Otherwise, if

index > limit, no branch is taken, and execution continues at PC + 4 as usual.

For simplicity, assume that the immediate representing limit must be ≥ 0.

Note: The ALU does not support a multiply or shift operation, but multiplication by a power of 2

(i.e., left shift) can be efficiently handled with repeated doubling.

Fill in the microcode table on the following page.

Name: ______________________________

 7

2.B (4 Points) Performance of your SWITCH implementation

How many cycles does your SWITCH instruction take to execute in the following situations?

Assume that all memory accesses complete in a single cycle (just for the purposes of this CPI

calculation – you must still use spin states). Count all cycles starting from FETCH0 to the last

microinstruction that jumps back to FETCH0.

1. index ≤ limit

2. index > limit

Name: ______________________________

 8

State Pseudocode IR
Ld

Reg
Sel

Reg
Wr

Reg
En

A
Ld

B
Ld

ALUOp ALU
En

MA
Ld

Mem
Wr

Mem
En

Imm
Sel

Imm
En

Br Next State

FETCH0: MA ← PC;
A ← PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR ← Mem 1 * * 0 0 * * 0 0 0 1 * 0 S *

 PC ← A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *

…

SWITCH0:

Name: ______________________________

 9

Problem 3 (20 Points): Pipelining and Exceptions

Figure 3.1

3.A (2 Points) Latency vs Occupancy

Figure 3.1 shows a classic fully-bypassed 5-stage pipeline that has been augmented with an

unpipelined divider in parallel with the ALU. Bypass paths are not shown in the diagram. This

iterative divider produces 2 bits per cycle until it outputs a full 32-bit result.

1. (1 Point) What is the latency of a divide operation in cycles?

2. (1 Point) What is the occupancy of a divide operation in cycles?

Name: ______________________________

 10

3.B (3 Points) Hazards

Note that the div instruction in RISC-V cannot raise a data-dependent exception. To avoid

pipeline stalls while a multi-cycle divide operation is in progress, the pipeline control logic

allows subsequent instructions that do not depend on the divide result to be issued and completed

before the divide has completed.

What additional hazards might be caused by div instructions, aside from the structural hazard

on the divider itself? If any, describe how they could be resolved using an interlock.

3.C (10 Points) Interrupts

In this pipeline, asynchronous interrupts are handled in the MEM stage and cause a jump to a

dedicated interrupt trap handler address. The interrupt latency is defined as the number of cycles

from when an interrupt request is raised in the MEM stage until the first instruction of the

interrupt handler reaches the MEM stage.

1. (1 Point) What is the minimum interrupt latency that the pipeline can achieve in the best-

case scenario?

Name: ______________________________

 11

2. (6 Points) Consider the execution of the code below. Suppose an interrupt is raised

during cycle 8, which causes a jump to interrupt_handler. The handler increments

a counter at a fixed memory address before returning to the original context.

Fill in the pipeline-timing diagram on the next page until the mret instruction at the end

of interrupt_handler commits. The architectural guarantee of precise interrupts

should be upheld. Assume that all memory accesses take one cycle in the MEM stage.

lw x2, 0(x1)

div x1, x2, x3

slli x3, x2, 1

lui x4, 0x100

addi x4, x4, 0xf

xor x5, x3, x4

sub x3, x5, x2

...

interrupt_handler:

sw x1, 0(x0) # Save register in known location

lw x1, 4(x0) # Use register to increment counter

addi x1, x1, 1

sw x1, 4(x0)

lw x1, 0(x0) # Restore register before returning

mret # Return from interrupt handler

3. (2 Points) What is the interrupt latency for the code above?

4. (1 Point) Which instruction should interrupt_handler return to in order to ensure

that the program will continue to execute correctly?

Name: ______________________________

 12

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

 lw F D X M W

Name: ______________________________

 13

3.D (5 Points) Reducing Interrupt Latency

Propose a modification to the architecture and/or microarchitecture that would reduce the

interrupt latency for the code in 3.C, while ensuring that interrupts are handled precisely.

Name: ______________________________

 14

Problem 4: (25 Points) Caches

In this problem, we will investigate how various cache organizations perform on the following

loop. Let A be a 1024×1024 matrix of 32-bit int elements stored in row-major order, aligned to

the beginning of a cache line.

for (int i = 1; i < 16; i++) {

 int x = A[0][i-1];

 int y = A[i][i];

 A[i][i] = x + y;

}

Assume that memory accesses are executed in the order shown in the program – i.e., the

compiler does not reorder load and store instructions. Variables x, y, and i are held in registers.

4.A (6 Points) Direct-Mapped Cache

Consider a 4 KiB direct-mapped L1 data cache with 16-byte cache lines.

1. (4 Points) Count the numbers of cache hits and misses for each category on the loop

shown above. Assume that the cache is initially empty.

Hits:

Compulsory misses:

Conflict misses:

Capacity misses:

Name: ______________________________

 15

2. (2 Points) What is the average memory access time (AMAT) in cycles if the hit time of

the direct-mapped cache is 1 cycle and the L1 miss penalty to DRAM is 100 cycles?

(You do not need to calculate the exact number; just write the formula with the individual

terms substituted with the appropriate values.)

4.B (6 Points) 2-way Set-Associative Cache

Now we double the capacity by switching to an 8 KiB two-way set-associative L1 data cache

with LRU eviction and a write-allocate policy. The cache line size remains 16 bytes.

1. (4 Points) Count the numbers of cache hits and misses for each category on the preceding

loop. Assume that the cache is initially empty.

Hits:

Compulsory misses:

Conflict misses:

Capacity misses:

2. (2 Points) What is the AMAT in cycles if the hit time is 2 cycles and the L1 miss penalty

to DRAM is 100 cycles? (You do not need to calculate the exact number; just write the

formula with the individual terms substituted with the appropriate values.)

Name: ______________________________

 16

4.C (7 Points) 2-way Column-Associative Cache

Suppose we convert our 8 KiB 2-way set-associative cache from 4.B into an 8 KiB 2-way

column-associative cache with 16-byte lines. A column-associative (or pseudo-associative)

cache is similar in structure, except that instead of accessing both ways simultaneously, the ways

are accessed sequentially over consecutive cycles.

In other words, each way is treated as a separate 4 KiB direct-mapped cache. On a cache access,

Way 0 is searched first. If the line is not found in Way 0, then Way 1 is accessed the next cycle.

If there is a hit in Way 1, the lines in the two ways are swapped. On a miss, the new line is

placed in Way 0, and the previous line is moved to Way 1.

1. (1 Point) What is an advantage of a column-associative cache compared to a set-

associative cache of the same associativity?

2. (4 Points) Count the numbers of cache hits and misses for each category on the preceding

loop. Assume that the cache is initially empty.

Hits in Way 0:

Hits in Way 1:

Compulsory misses:

Conflict misses:

Capacity misses:

Name: ______________________________

 17

3. (2 Points) What is the AMAT in cycles if accessing each way takes 1 cycle and the L1

miss penalty to DRAM is 100 cycles? (You do not need to calculate the exact number;

just write the formula with the individual terms substituted with the appropriate values.)

4.D (6 Points) Virtual Memory

To further reduce hit time while maintaining capacity, we now consider moving back to an 8

KiB direct-mapped VIPT (virtually indexed, physically tagged) cache.

1. (2 Points) Explain how virtual memory aliasing can occur with 4 KiB pages.

2. (4 Points) Describe a mechanism to prevent aliases from co-existing in the 8 KiB direct-

mapped VIPT cache.

Name: ______________________________

 18

Problem 5: (25 Points) Runahead Processing (CS252 ONLY)

An in-order runahead processor is one technique to reduce the impact of cache misses. A

runahead processor has two execution modes (regular and runahead) and two corresponding

copies of all architectural registers (regular and runahead). The runahead registers each have an

additional valid bit indicating if the register contains valid data.

In regular execution mode, the processor behaves as a regular in-order processor and updates the

regular architectural registers. But instead of stalling when the processor encounters a data cache

miss on a load instruction, it switches to runahead mode. First the processor copies the regular

architectural registers including the program counter into the runahead architectural registers,

and sets all the runahead register valid bits, except on the register corresponding to the target of

the load which is marked invalid. The processor then begins execution in runahead mode.

In runahead mode, the processor continues to execute instructions but now uses the runahead

registers. If the result of an instruction depends on a source register marked invalid, its

destination runahead register is also marked invalid. If a runahead instruction is a load that

causes a new data cache miss, the destination runahead register is marked invalid, the data cache

issues a prefetch for the missing line, and the processor continues execution.

When the original data cache miss returns, the missing load’s destination register in the regular

register set is updated, then the processor re-enters regular execution mode with the regular

program counter pointing to the instruction after the load that caused the original data cache miss.

5.A (3 Points) Branches

What should runahead mode do when encountering a conditional branch that compares one or

more invalid registers?

Name: ______________________________

 19

5.B (3 Points) Jumps

What should runahead mode do when encountering a jump register (jr) instruction where the

target is an invalid register?

5.C (4 Points) Stores

How should runahead mode handle store instructions?

Name: ______________________________

 20

5.D (5 Points) Vector Accumulate

Consider the following loop, which accumulates elements in a vector, running on a runahead

processor:

li x15, 0 # Clear accumulator

loop:

lw x8, (x10) # Get next word

addi x10, x10, 4 # Bump address pointer

add x15, x15, x8 # Accumulate new word into sum

bne x10, x11, loop # Loop if not at end of vector

This runahead processor has a regular 5-stage RISC pipeline, and the copy from architectural

registers to runahead registers uses special data paths to complete in one cycle.

The system has 32-byte cache lines. Assume the loop accumulates over many elements. What is

the smallest cache miss penalty for which the runahead processor will exhibit a performance

improvement on this loop over a non-runahead processor?

Name: ______________________________

 21

5.E (5 Points) Linked List Accumulate

Consider the following loop, which accumulates values in a linked list, running on a runahead

processor:

li x15, 0 # Clear accumulator

beqz x10, exit # Check if pointer is null

loop:

lw x8, 0(x10) # Get next value

lw x10, 4(x10) # Get next pointer

add x15, x15, x8 # Accumulate value into sum

bnez x10, loop # Loop if next pointer is not null

exit:

Describe if and how the runahead processor can provide a benefit in this case over a simple in-

order processor that stalls on a load cache miss.

