CS152: Section 2

Q1. Iron Law

Q1.1: For each term in the Iron Law, give at least three techniques that improve that term. Instructions/program:

Cycles/instruction:

Time/cycle:

Q1.2: Explain how each term changes given the proposed modification (increase / decrease / no effect).
[Quiz 1, 2011] In a classic RISC pipeline, modify the ISA (and thus the microarchitecture) to use hardware interlocking instead of software interlocking for both branch delay slots and load-use delay slots

Instructions/program:

Cycles/instruction:

Time/cycle:
[Quiz 1, 2013] Remove hardware floating-point instructions and instead use software subroutines for floating-point arithmetic

Instructions/program:

Cycles/instruction:

Time/cycle:

Q2. Pipelining

Q2.1: What does the following code do? How many iterations does it run?

	ADDI	x2, x0, 0×700
LOOP:	ADD	x1, x2, x0
	LW	x2, 4 (x2)
	BNE	x2, x0, LOOP

Memory	Memory
Address	Value
0×400	0×000
0×404	$0 \times D 40$
\ldots	
0×700	$0 \times 9 F 0$
0×704	0×400
\ldots	
$0 \times 9 F 0$	0×400
$0 \times 9 F 4$	0×000
\ldots	
$0 x D 40$	0×000
0xD44	$0 \times 9 F 0$

Q2.2: Fill out the pipeline diagram for the following pipeline, assuming that branches are always predicted not taken.

- What is the CPI for the given code sequence?
- Consider splitting MEM into two stages, M1 and M2. How does the CPI change?
- What is the CPI if the BNE is always correctly predicted?

Q2.3: Fill out the pipeline diagram for the following pipeline, assuming that branches are always predicted not taken. [M. Golden and T. Mudge, "A comparison of two pipeline organizations", 1994]

- What is the CPI for the given code sequence?
- Consider splitting EX/MEM into two stages, M1 and EX/M2. How does the CPI change?
- What is the CPI if the BNE is always correctly predicted?

Q2.4: Suppose that the "load-use interlock" (LUI) pipeline from Q2.2 meets timing at 1 GHz . What is the minimum frequency at which the "address-generation interlock" (AGI) pipeline from Q2.3 performs better on the given code sequence, assuming perfect branch prediction?

Q2.5: Under what circumstances might you consider using the AGI pipeline design over the LUI pipeline?

