CS152 Worksheet 4

Q1. Prefetching

```
int A[N][M]; // N=32, M=32
int sum = 0;
for (int j = 0; j < M; j++) {
    for (int i = 0; i < N; i++) {
        prefetch(&A[i][j] + OFFSET); // prefetches from (A + M*i + j + OFFSET)
        sum += A[i][j];
    }
}
```

Assume 128B cache lines (each row fits entirely in a cache line). Without the prefetch, the inner loop takes 50 cycles. The L1 miss penalty is 40 cycles. What should OFFSET be to minimize the total program cycles?

Q2: Linear vs Hierarchical Page Tables

Consider 4 GiB (32-bit) of addressable virtual memory, 4 KiB pages, 4-byte PTEs

- How many bits in the page offset?
- How many bits in the page number?
- How many pages?

Consider a linear page table for a process with only 1 page mapped to physical memory (paged in)

- How many valid PTEs?
- Total size of page table?

Consider a 2-level page table for a process with only 1 page mapped to physical memory (paged in). Assume that VPN bits are split equally between the two levels.

- How many valid PTEs?
- Total size of page table structures?

Q3. Multi-level Page Table

The table on the next page shows the contents of a portion of physical memory used for page tables. Assume the system uses 32-bit words, 16 byte pages, two-level page tables, and a fully associative four-entry TLB with LRU eviction. At the beginning, the TLB is empty and the free pages list contains $0 \times 9,0 \times 5,0 \times A, 0 \times 7,0 \times 1,0 \times 3,0 \times B, 0 \times D, 0 \times E$, and $0 \times F$ in that order. For the following virtual memory trace, indicate whether the access results in a TLB hit, a page table hit, or a page fault, and give the translated physical address. Fill out the memory table and the TLB with its final state. Assume that the page table base register is set to 0 .

1. How many bytes of virtual memory are addressable?
2. How many bytes of physical memory are addressable?
3. Why might DRAM size > virtual address space size be useful?

Virtual Address	Index1	Index2	TLB hit/miss	Page hit/ Page fault	Physical Address
0×68					
0×14					
$0 \times 6 \mathrm{C}$					
0×90					
0×74					
$0 \times E 4$					
0×18					
$0 \times D 0$					

TLB					
VPN					
PPN					

Addr	Contents
0×00	0×06
0×04	0×04
0×08	0×02
$0 \times 0 \mathrm{C}$	
0×10	
0×14	
0×18	0×08
$0 \times 1 \mathrm{C}$	
0×20	$0 \times 0 \mathrm{C}$
0×24	
0×28	
$0 \times 2 \mathrm{C}$	
0×30	
0×34	
0×38	
$0 \times 3 \mathrm{C}$	
0×40	
0×44	
0×48	
$0 \times 4 \mathrm{C}$	
0×50	0×12
0×54	
0×58	
$0 \times 5 \mathrm{C}$	
0×60	
0×64	
0×68	
$0 \times 6 \mathrm{C}$	

Table 1. Initial contents of memory

