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CS152 Section 7

Q1. VLIW and Software Pipelining
Consider the following loop which computes a dot product:

for (i = 0; i < N; i++) {
C += A[i] * B[i];

}

A and B are arrays of double-precision floating-point numbers.  The result is accumulated into
C.

The code is compiled into the following assembly.  x1 and x2 are initialized to the base
addresses of arrays A and B, respectively.  x3 contains a pointer to the end of array A.  f0 holds
C.

loop:
fld f1, 0(x1)
fld f2, 0(x2)
fmul f3, f1, f2
fadd f0, f0, f3
addi x1, x1, 8
addi x2, x2, 8
bne x1, x3, loop
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Q1.1: VLIW Scheduling
Schedule the code onto an in-order VLIW machine with the following execution units:

● One integer ALU, 1-cycle latency, also used for branches
● One load/store unit, 2-cycle latency
● One floating-point adder, 3-cycle latency
● One floating-point multiplier, 4-cycle latency

All functional units are fully pipelined and latch their operands at issue.  Instructions are
statically scheduled with no interlocks; all latencies are exposed in the ISA.  All register
operands are read before any writes from the same instruction take effect (i.e., no WAR hazards
between operations within a single VLIW instruction).  Assume that no exceptions arise during
execution.

Do not apply loop unrolling or software pipelining.  Entries for NOPs can be left blank.

Label INT MEM FADD FMUL
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Q1.2: Software Pipelining
Schedule operations with VLIW instructions using only software pipelining (no loop unrolling).
Include the prologue and epilogue to initiate and drain the software pipeline.

If possible, use different colors to distinguish between instructions from different iterations.
Entries for NOPs can be left blank.

Label INT MEM FADD FMUL
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Q2: Branch Prediction
Consider the following code:

for (int i = 0; i < 4; i++)      // BRANCH_A
for (int j = 0; j < 4; j++)  // BRANCH_B

if (j % 2)               // BRANCH_C
sum += i

li x4, 4
li x1, 0

loop1:
li x2, 0

loop2:
andi x5, x2, 0x1
beqz x5, skip // BRANCH_C
add x3, x3, x1

skip:
addi x2, x2, 1
bne x2, x4, loop2 // BRANCH_B
addi x1, x1, 1
bne x1, x4, loop1 // BRANCH_A

Q2.1: Bimodal Counters
Assume a BHT that is indexed by PC, where the PCs of these branches do not alias to the
same entry.

What is the branch prediction accuracy for each branch if the BHT uses 1-bit counters?  The
counters are initialized to 0 (not taken).

What is the branch prediction accuracy for each branch if the BHT uses 2-bit counters?  The
counters are initialized to 00 (strongly not taken).
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Q2.2: Two-level Predictors
At least how many bits of local branch history are required to perfectly predict each branch?

At least how many bits of global branch history are required to perfectly predict each branch?


