
CS152 Section 8

Q1: Parallelism and Utilization
The goal of every one of the various architectures we have studied in this module is to improve
the utilization of the functional units built into the design. Achieving perfect saturation is often
impossible, and in general we classify the wasted cycles as either vertical waste (due to long or
variable latency instructions) or horizontal waste (due to limitations on the number of
instructions that can issue or execute on a given cycle). Utilization is improved by exploiting
parallelism, but the ways and times at which this parallelism is expressed vary radically between
these architectures.

How is vertical waste
reduced?

How is horizontal
waste reduced?

Limitations or
disadvantages
compared to an
in-order superscalar
RISC machine?

Out-of-Order
Superscalar
Execution

VLIW

Vector

Vertical
Multithreading

Simultaneous
Multithreading

Q2: Fine-Grained Multithreading

In this problem, we would like to investigate the performance of the following C program on a
multithreaded architecture. The arrays A, B, and C contain double-precision floating-point
numbers.

for (int i = 0; i < M; i++) {
C[i] = A[i] + B[i];

}

loop: fld f1, 0(x1)
fld f2, 0(x2)
fadd f3, f1, f2
fsd f3, 0(x3)
addi x1, x1, 8
addi x2, x2, 8
addi x3, x3, 8
addi x4, x4, -1
bnez x4, loop

To split the work across N threads, we rewrite the loop so that each thread executes every Nth
iteration of the loop.

// TID is the thread ID (0 to N-1)
for (int i = TID; i < M; i += N) {

C[i] = A[i] + B[i];
}

loop: fld f1, 0(x1)
fld f2, 0(x2)
fadd f3, f1, f2
fsd f3, 0(x3)
addi x1, x1, 8N
addi x2, x2, 8N
addi x3, x3, 8N
addi x4, x4, -1
bnez x4, loop

We execute the code on a single-issue in-order processor. Integer operations take 1 cycle to
execute, floating-point arithmetic operations take 3 cycles, and memory operations take 2
cycles. The processor uses fine-grained multithreading and switches to a new thread every
cycle using fixed round-robin scheduling. Assume perfect branch prediction.

Q2.1: Utilization
How many threads are needed to fully utilize the pipeline?

Q2.2: Peak Performance
What is the peak performance in FLOPs/cycle for the multithreaded program?

Q2.3: Instruction Reordering
Can peak performance be reached with fewer threads by rearranging instructions in the loop?

Q3: Simultaneous Multithreading

Q3.1: Shared Resources
In an SMT processor, some resources are shared between threads, while others are specific to
a single thread. For each of the following resources, indicate whether they can be shared by all
threads or must be duplicated for each thread.

Program Counter

Fetch Unit

Rename Table

Physical Register File

Issue Window

Functional Units

Reorder Buffer

Q3.2: Icount Policy

When choosing which thread to fetch from in an SMT processor, we use the Icount algorithm,
which prioritizes the thread with the fewest instructions in flight. Why would we expect this to
improve throughput?

