
CS152 Section 10

Q1: Memory Consistency Models

Consider the following two threads executing on two different cores. Assume that memory
locations A, B, and C are all initialized to zero.

P1: P2:
li x1, 1 li x1, 2

I1 lw x2, A J1 sw x1, B
I2 sw x1, C J2 lw x2, C
I3 lw x3, B J3 sw x1, A

We are interested in the final values of P1.x2, P1.x3, and P2.x2.

Q1.1: Sequential Consistency
Give all possible sets of values of P1.x2, P1.x3, and P2.x2 under sequential consistency (SC).

Q1.2: W→R Relaxation
Give all new possible sets of values if we relax Write → Read ordering constraints and the
instruction orderings that caused them.

Q1.3: W→W Relaxation
Give all new possible sets of values if we relax Write → Write ordering constraints and the
instruction orderings that caused them.

Q1.4: R→R and R→W Relaxation
Give all new possible sets of values if we relax Read → Read and Read → Write ordering
constraints and the instruction orderings that caused them.

Q2: Synchronization

We want to write a multithreaded program that uses a producer-consumer model. A producer
thread computes some value and sends it to a consumer thread through a queue. The queue is
an array in memory with a head pointer and a tail pointer. The producer pushes an item onto
the queue by writing to the address pointed to by the tail pointer and then incrementing the tail.
The consumer pulls an item from the queue by reading from the address pointed to by the head
pointer and then incrementing the head. The queue is empty if the head pointer and tail pointer
are the same.

Assuming that the queue is infinitely long, and each item is eight bytes, the assembly code for
the producer and consumer program is as follows.

Producer Consumer

x1: address of tail pointer
x2: data to be written

ld x3, 0(x1)
sd x2, 0(x3)
addi x3, x3, 8
sd x3, 0(x1)

x1: address of tail pointer
x2: address of head pointer

ld x3, 0(x2)
spin:

ld x4, 0(x1)
beq x3, x4, spin
ld x5, 0(x3)
addi x3, x3, 8
sd x3, 0(x2)

then process x5

This code will be correct if the memory system is sequentially consistent and there is only one
producer and one consumer.

Q2.1: Relaxed Memory Model
Would this still be correct if we had a relaxed memory model? What problems could occur?

Q2.2: Fences
What is the minimum set of fence instructions that needs to be added to make these programs
work under a relaxed memory model?

Q2.3: Atomic Synchronization Primitives

Now assume we have multiple producers sharing the same queue. We want to rewrite the
producer code to make it thread safe. Assume we no longer have to worry about the order of
storing to the queue vs. storing the tail pointer.

We can use an atomic fetch-and-add, a compare-and-swap, or a test-and-set instruction as our
synchronization primitive. Write the producer code using each of these. Assume as before that
register x1 contains the address of the tail pointer and that register x2 contains the data to be
stored. Pseudocode for these primitives is shown below.

Atomic Add Compare and Swap Test and Set
amoadd rd, rs1, (rs2) cas rd, rs1, rs2, (rs3) ts rd, (rs)

rd <= M[rs2]
M[rs2] <= rd + rs1

if (rs1 == M[rs3])
M[rs3] <= rs2
rd <= 1

else
rd <= 0

rd <= M[rs]
M[rs] <= 1

Atomic Add

Compare and Swap

Test and Set

Q2.4: Efficiency
Which of these methods is most efficient (least number of memory transactions)? Which is the
least efficient?

