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Problem 1: (20 points) Iron Law  

Complete each of the following statements, referencing at least one component of the Iron Law 

in your answer. 

Example: Adding caches might decrease time-per-program when ... 

the code regularly hits in the cache, reducing the frequency of stalls and decreasing cycles-per-

instruction. 

 

A. (4 pt) Using interrupts for I/O instead of polling might decrease time-per-program when ... 

 

I/O is very infrequent, so using interrupts instead of polling reduces instructions-per-

program, as polling could execute many useless instructions 

 

(ALT) Using interrupts for I/O instead of polling might increase time-per-program when ... 

 

I/O is very frequent. any many cycles will be spent doing context switching, increasing 

cycles per instruction. 

 

 

B. (4 pt) Applying trace scheduling might decrease time-per-program when ... 

 

The code is statically scheduleable, so trace scheduling will increase ILP, decreasing cycles 

per instruction. Instructions per program will not decrease, because you have to execute at 

least the same amount of code as you do in the original program. 

 

(ALT) Applying trace scheduling might increase time-per-program when ... 

 

The code is inherently not statically scheduleable. Instructions per program would increase 

significantly due to much time spent fixing up work that shouldn’t have been performed. CPI 

doesn’t necessarily increase, because the trace-scheduled code could have been predicted 

well by a dynamic branch predictor. 

 

 

C. (4 pt) Using coherent DMA to maintain I/O coherence instead of cache-flush instructions 

might decrease time-per-program when ... 

 

The software is conservatively flushing every line in the DMA region with a non-coherent 

bus, greatly increasing instructions-per-program. 
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D. (4 pt) Using dynamic binary translation instead of a software interpreter for non-native code 

might decrease time-per-program when... 

 

The program is used frequently, and the translated binary is kept cached, decreasing native 

instructions per program significantly compared to the software interpreted version. 

 

 

 

 

 

 

 

 

 

 

 

 

E. (4 pt) A VLIW encoding scheme that compresses NOP fields in the instruction encoding 

might decrease time-per-program when... 

 

 

NOPs are very common in the VLIW code, so the compressed form will take up less ICache 

space, reducing instruction cache miss rate, and reducing cycles per instruction. 
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Problem 2: (28 points) Virtual Memory 

Consider a system which uses a two-level page-based virtual memory system. 

• Pages are 16 bytes 

• PTEs are 4 bytes 

• Memory is byte-addressed 

• The system is initialized with only the base page table allocated 

• Physical pages are allocated from lower to higher PPNs incrementally 

• The base page table is architecturally mandated to be at physical address 0x00, so a PTE 

containing value 0x00 is effectively an “invalid” PTE (no valid bit is necessary) 

• The PTE is entirely reserved for a PPN (no valid, status, or permission bits) 

2.A (12 pt) Paging Behavior 

Fill out the contents of physical memory after value 0x6C is written to virtual address 0x94. 

Fill out the contents of physical memory after value 0x94 is written to virtual address 0x6C. 

You only need to show the values of the memory locations that are written/changed. 

Address Value 

0x00  

0x04 0x1 

0x08 0x1 

0x0c  

0x10  

0x14 0x2 

0x18 0x2 

0x1c  

0x20  

0x24 0x6C 

0x28  

0x2c 0x94 

0x30  

0x34  

0x38  

0x3c  

0x40  

0x44  

0x48  

0x4c  
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2.B (4 pt) Virtual Address Space 

What is the size of the virtual address space of this virtual memory system in bytes? 

 

Virtual address is 8 bits (2 bits VPN0 + 2 bits VPN1 + 4 bits offset). 

2^8 bytes = 256 bytes 

 

 

 

 

2.C (4 pt) Physical Address Space 

How much physical memory does this virtual memory system support? 

 

32 bit PPN in PTE + 4 bit offset = 36 bits physical address 

2^36 bytes  = 64 GB 

 

 

 

2.D (4 pt) VIPT L1 

Explain briefly why L1 caches are often designed to be VIPT (virtually indexed, physically 

tagged). 

 

L1 cache accesses must be fast, so it is desirable to perform translation in parallel with cache 

access. VIPT enables the L1 cache to be indexed with the virtual address, and then the tag can be 

compared with the physical address after translation and tag read are complete. 

 

 

2.E (4 pts) PIPT L2 

Explain briefly why L2 caches are often designed to be PIPT (physically indexed, physically 

tagged). 

 

Primary reason is because L2 is usually accessed only on L1 miss, so the physical address would 

be available at this time.  

 

Alternative reason could be to provide anti-aliasing protection to a VIPT L1 may contain aliases, 

but PIPT is still desirable for L2 even if L1 cannot contain aliases. However, PIPT by itself is not 

sufficient for this, there needs to be an additional mechanism for purging L1 caches of the 

aliased line. 
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Problem 3: (28 points) Pipelining and Out-of-Order Execution 

 

3.A (12 pt) ROB Behavior 

In this question, we consider a data-in-ROB design of an out-of-order core.  For the following 

instructions, fill out the contents of the ROB after a large amount of time has passed, but the first 

load has not yet retrieved a value from memory. 

0x800: li   t0, 0x4 

0x804: lw   t1, 0(t0) 

0x808: addi t1, t1, 0x4 

0x80c: lw   t0, 0(t1) 

Address 0x4 contains value 0x4 initially.  The first row is partially completed for you. 

IDX PC issued completed p1 src1 pd dest wbdata 

0 0x800 Y Y Y N/A Y t0 0x4 

1 0x804 Y N Y 0x4 N t1  

2 0x808 N N N idx1 N t1  

3 0x80c N N N idx2 N t0  

 

0x800: li   t0, 0x4 

0x804: lw   t1, 0(t0) 

0x808: addi t0, t0, 0x4 

0x80c: lw   t0, 0(t1) 

IDX PC issued completed p1 src1 pd dest wbdata 

0 0x800 Y Y Y N/A Y t0 0x4 

1 0x804 Y N Y 0x4 N t1  

2 0x808 Y Y Y 0x4 Y t0 0x8 

3 0x80c N N N idx1 N t0  

 

3.B (2 pt) PC in ROB 

The PC field in the ROB is not used when instructions issue.  What is the PC field used for? 

PC is used to determine address at which an precise exception is seen, so the exception handler 

knows where to go to resume execution. PC is not used for rollback. 

Although PC could be used as a source of data for some instructions which need the PC, the 

prompt says that PC is not used when instructions issue. 
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3.C (14 pt) Hazard Identification 

For each of the following microarchitectural optimizations, circle the types of hazards that it 

addresses.  Some optimizations may address multiple hazards, and some hazards may be 

addressed by multiple optimizations. 

 

i. Register renaming: 

 

RAW WAR WAW RAR Control Structural 

 

 

ii. Bypass paths: 

 

RAW WAR WAW RAR Control Structural 

 

 

iii. Branch prediction: 

 

RAW WAR WAW RAR Control Structural 

 

 

iv. Non-blocking data cache: 

 

RAW WAR WAW RAR Control Structural 

 

 

v. Load forwarding out of speculative store buffer 

 

RAW WAR WAW RAR Control Structural 

 

 

vi. Out-of-order execution: 

 

RAW WAR WAW RAR Control Structural 

 

 

vii. Fully pipelined functional units: 

 

RAW WAR WAW RAR Control Structural 
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Problem 4: (20 points) Vector Architectures 

In this problem, we consider an algorithm for transposing a square matrix in-place by swapping 

rows and columns.  The C code is provided below.  The matrix elements are 32-bit integers. 

 
void transpose(size_t n, int *mat) { 
  for (size_t i = 0; i < n; i++) { 

    for (size_t j = i + 1; j < n; j++) { 

      int t = mat[(i*n)+j]; 

      mat[(i*n)+j] = mat[(j*n)+i]; 

      mat[(j*n)+i] = t; 

   } 

} 

 

An abbreviated listing of potentially relevant vector load/store instructions is provided below. 

 

Vector Load/Store Instructions 

vle32.v vd, (rs1), vm vd[i] = mem[(rs1) + i*4] 

vse32.v vs3, (rs1), vm mem[(rs1) + i*4] = vs3[i] 

vlse32.v vd, (rs1), rs2, vm vd[i] = mem[(rs1) + i*rs2] 

vsse32.v vs3, (rs1), rs2, vm mem[(rs1) + i*rs2] = vs3[i] 

vluxei32.v vd, (rs1), vs2, vm vd[i] = mem[(rs1) + vs2[i]] (unordered) 

vsuxei32.v vs3, (rs1), vs2, vm mem[(rs1) + vs2[i]] = vs3[i] (unordered) 

vloxei32.v vd, (rs1), vs2, vm vd[i] = mem[(rs1) + vs2[i]] (ordered) 

vsoxei32.v vs3, (rs1), vs2, vm mem[(rs1) + vs2[i]] = vs3[i] (ordered) 
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4.A (12 pt) Vectorizing Transpose 

Fill out the following vector code for vectorizing matrix transpose.  

    # a0: n 

    # a1: mat 

transpose: 

    li   t0, 1 

    bleu a0, t0, end   # skip if n <= 1 

    slli t0, a0, 2____ # initialize t0 with stride in bytes 

    __________________ # optional line if needed 

    addi a0, a0, -1    # decrement n 

 

loop_i: 

    mv   t2, a0        # number of elements to swap = n - (i+1) 

    addi t3, a1, 4     # temporary pointer to row at mat[i][i+1] 

    add  t4, a1, t0    # temporary pointer to column mat[i+1][i] 

    addi a1, t4, 4     # bump mat pointer by (n + 1) elements 

 

loop_j: 

    vsetvli t5, t2, e32, m1, ta, ma 

    vle32.v  v0, (t3)____ # vector load row mat[i][...] 

    vlse32.v v1, (t4), t0 # vector load column mat[...][i] 

    vsse32.v v0, (t4), t0 # vector store column mat[...][i] 

    vse32.v  v1, (t3)____ # vector store row mat[i][...] 

 

    sub  t2, t2, t5       # decrement vl 

    mul  t6, t5, t0       # vl*stride in bytes 

    slli t5, t5, 2        # vl in bytes 

    add  t3, t3, t5       # bump row pointer 

    add  t4, t4, t6       # bump column pointer 

    bnez t2, loop_j 

 

    addi a0, a0, -1       # decrement n 

    bnez a0, loop_i 

 

end: 

    ret 
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4.B (4 pt) Vectors and Virtual Memory 

Suppose n is very large (n > 1024).  What is the minimum number of TLB entries as a function 

of the vector length (VL) that is necessary to avoid all non-compulsory TLB?  Assume the page 

size is 4 KiB. 

 

The original intent of this problem was to find the minimum size to avoid all non-compulsory 

TLB misses within one iteration of the inner loop (loop_j). In this case, we need TLB entries 

for every entry in the column vector and every entry in the row vector, such that the vector loads 

and stores do not evict each other’s entries. When n is large, each entry in a column vector will 

be on its own page. The number of pages for a row is at least ceil(VL / 1024) + 1. Thus, the 

minimum number of TLB entries with this interpretation is  

VL + ceil(VL / 1024) + 1. 

 

However, since the wording does not specify that compulsory misses across strip-mine iterations 

are allowed, an alternative interpretation is that there can be no compulsory misses across the 

entire algorithm. With this interpretation, we require that there can be no evictions  across all 

iterations of loop_j. Following similar reasoning as before, the minimum number of TLB entries 

would be  

n + ceil(n / 1024) + 1 

 

 

 

 

 

4.C (4 pt) Reducing Cache Misses 

Briefly explain how you could restructure the code to dramatically reduce the frequency of cache 

misses. 

The ideal solution is to transpose small blocks of the matrix that fit in cache. In the native 

algorithm, the column-wise accesses touch only a single element of many cache lines, so cache 

misses will be frequent when n is large. The ideal blocking is to pick two blocks of the input 

array such that both blocks fit in cache. 

 

Loop interchange by itself is not sufficient. No matter how you reorder the loops, one set of 

accesses will demonstrate a strided access pattern. 
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Problem 5: (22 points) Cache Coherence 

5.A (6 pt) Out-of-order Coherence 

Consider an out-of-order processor that implements conservative out-of-order load execution as 
discussed in lecture.  A load is issued as soon as its address calculation is completed (potentially 
out of program order) and the following conditions are met: 

• All addresses for older stores in the speculative store buffer are known. 
• If the load address matches one of those entries in the speculative store buffer, the store 

data from the youngest store older than the load is available for bypassing. 
 

i. (4 pt) This approach behaves correctly in a single-core system.  How can this approach 
cause a coherence violation in a multi-core system? 
 
Consider the following example: 

Core 0 Core 1 
   # Let a0 = a1 = A 
3: lw t0, (a0) 
1: lw t1, (a1) 

   # Let a0 = A 
2: sw t0, (a0) 

 
Loads to the same address are not necessarily executed in program order within a core.  It 
is possible for a younger load (label 1) to be issued first and observe an older value in 
memory, while the older load (label 3) is issued later and obtains a newer value written 
by a remote store (label 2). 

 

Many incorrect answers claimed that, since the speculative store buffers are not shared 
between cores, a load from Core 1 to the same address would observe a different value 
than a load from Core 0 which simultaneously bypasses from a store in its local store 
buffer. 

While possible, this is not problematic for coherence.  Stores in the speculative store 
buffer might not actually commit and therefore should not be visible to other cores.  If 
Core 0's store eventually does commit, then Core 1's load would logically precede that 
store and Core 0's load in the global memory order. 

If software requires that Core 1 reads the value written by Core 0, the ordering must be 
enforced by some other mechanism, and this becomes a matter of memory consistency 
and synchronization rather than coherence. 
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Similarly, other incorrect answers claimed that bypassing by both cores would cause 
them to see a different order of writes to the same location, typically using the example: 

Core 0 Core 1 
   li t0, 1 
1: sw t0, (A) 
3: lw t1, (A) # bypass 1 

   li t0, 2 
2: sw t0, (A) 
4: lw t1, (A) # bypass 2 

 
However, each core's load would in fact be ordered logically after the local store from 
which it bypassed but before the next remote store to the same address.  Suppose Core 1's 
store (label 2) becomes visible before Core 0's store (label 1).  From the perspective of 
the system, the global memory order by label would be 2 4 1 3, so there is no 
contradiction between what each core individually observes and the total order of writes. 

 

 

ii. (2 pt) Propose a simple solution for the coherence problem discussed above. 
 
Multiple feasible solutions could work: 

• Do not execute loads out of program order 
• Replay a load whenever its cache line becomes invalidated, either due to a remote 

store or voluntary eviction 
• Replay all younger loads to the same address after issuing an older load 
• Replay all loads in program order at commit time 

Loads should still bypass from the speculative store buffer on a match even if another 
core commits a store to the same location in the meantime, since the uncommitted local 
store represents a future write earlier in program order. 

Note that dependent instructions do not strictly need to be re-executed after replaying a 
load if the newer load result is identical to the previous speculative value. 
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5.A (16 pt) Directory-based MOSI Coherence 

Consider the baseline directory-based cache-coherence protocol discussed in Handout 6 
(distributed with exam), which implements an MSI protocol. We consider extending that 
protocol to support MOSI coherence in a system which implements cache-to-cache links. 

In the diagram of the adjusted system below, notice that DRAM is distinct from the directory. 

 
 
 
 
 
 
 
 
 
 
 
 
To support the MOSI protocol in the directory-based system, we make the following 
modifications: 

• New cache state C-owned for the O state in MOSI 
o If a cache line is in this state, the line is dirty and read-only, and the owning 

cache is responsible for providing data to other caches. 
o The C-owned state can only be entered from the C-modified state. 
o A single cache may have the line in C-owned while multiple other caches have 

the same line in C-shared. 
• New directory state O(id, dir) 

o Cache <id> is the owner of the line, and all caches in dir are sharers. 
• New message type FwdShReq(Home, id, id`, a) 

o This is sent from the directory to cache <id> when the directory is in the W or O 
state and has received a ShReq from cache <id`>. 

o When cache <id> receives this message, it moves the line to the C-owned state 
and sends ShRep directly to cache <id`>. 

o Note that FwdShReq subsumes WbReq/WbRep in the original MSI protocol. 
• New message type FwdExReq(Home, id, id`, a) 

o This is sent from the directory to cache <id> when the directory is in the W or O 
state and has received an ExReq from cache <id`>. 

o When cache <id> receives this message, it invalidates its copy of the line and 
sends ExRep directly to cache <id`>. 

o Note that FwdExReq subsumes FlushReq/FlushRep in the original MSI protocol. 
• Caches can send ShRep(id, id`, data(a)) and ExRep(id, id`, data(a)). 

o These messages go through the cache-to-cache links, bypassing the directory. 

Directory 

Core 0 

Cache 0 

Core 1 

Cache 1 

DRAM 
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i. (12 pt) Complete the table showing the sequence of transactions in this MOSI system. 
In each line, show the state of the caches and directories after the entire load/store has 
been completed.  (Ignore transient states.  Assume that every message is atomic). 

 
Note: Handout 6 inconsistently uses both "C-modified" and "C-exclusive" to refer to the M 
cache state.  Either is acceptable. 
 

Cache 0 
State 

Cache 1 
State 

Directory 
State 

Message(s) sent 

C0: read a C-shared C-nothing R({0}) ShReq(0, Home, a) 
ShRep(Home, 0, data(a)) 

C0: write a C-modified C-nothing W(0) ExReq(0, Home, a) 
ExRep(Home, 0, data(a)) 

C1: read a C-owned C-shared O(0, {1}) ShReq(1, Home, a) 
FwdShReq(Home, 0, 1, a) 
ShRep(0, 1, data(a)) 

C1: write a C-nothing C-modified W(1) ExReq(1, Home, a) 
FwdExReq(Home, 0, 1, a) 
ExRep(0, 1, data(a)) 

C1: evict a C-nothing C-nothing R({}) FlushRep(1, Home, data(a)) 

 
Alternate: 
 

Cache 0 
State 

Cache 1 
State 

Directory 
State 

Message(s) sent 

C0: read a C-shared C-nothing R({0}) ShReq(0, Home, a) 
ShRep(Home, 0, data(a)) 

C1: write a C-nothing C-modified W(1) ExReq(1, Home, a) 
InvReq(Home, 0, a) 
InvRep(0, Home, a) 
ExRep(Home, 1, data(a)) 

C0: write a C-modified C-nothing W(0) ExReq(0, Home, a) 
FwdExReq(Home, 1, 0, a) 
ExRep(1, 0, data(a)) 

C1: read a C-owned C-shared O(0, {1}) ShReq(1, Home, a) 
FwdShReq(Home, 0, 1, a) 
ShRep(0, 1, data(a)) 

C0: evict a C-nothing C-shared R({1}) FlushRep(0, Home, data(a)) 
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ii. (4 pt) Describe a system in which this directory-based MOSI protocol would provide 
significant advantages compared to the baseline MSI protocol. 

 
This protocol benefits a system in which DRAM latency is high and bandwidth is low. 

• More data requests are satisfied by on-chip caches instead of far-slower DRAM. 
• It eliminates the writeback message when another cache sends an ExReq.  The 

dirty line can be passed among successive writers without updating memory. 
• It eliminates a potentially unnecessary writeback when a line is written again by 

the owner after being shared. 

Using a one-writer many-readers scenario as an example of an advantage is not 
completely sufficient without mentioning the cost of DRAM accesses.  For subsequent 
ShReqs after the first ShReq following a write, forwarding a ShReq to the owner 
introduces one additional hop in the data response compared to the directory itself 
sending the ShRep in the R state. 

Also note that this particular version of a MOSI protocol is not an update protocol which 
propagates writes automatically to existing sharers.  As the C-Owned state is read-only, 
the cache must still transition to C-modified with an ExReq transaction and invalidate all 
other sharers before performing a write. 
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Problem 6: (31 points) Memory Consistency 

6.A (16 pt) True/False 

Indicate whether each statement is true or false and briefly explain your reasoning: 

i. (4 pt) Sequential consistency is guaranteed if all processors have in-order pipelines. 
 
False – The memory system is also responsible for enforcing sequential consistency, not 
only the core pipelines.  Even with in-order issue and cache coherence, reordering of 
memory operations can arise from write buffers with bypassing, write-through and non-
blocking caches, and a non-shared-bus interconnect fabric to separate memory banks. 
 

ii. (4 pt) A high-level language with a sequentially consistent memory model can be 
implemented on an ISA with a weaker memory model if fence instructions are provided. 
 
True – In the extreme case, the compiler can conservatively insert full fences between all 
memory operations to enforce strict program order within each thread.  A more practical 
approach is to emit fences only as necessary or create locks implicitly around accesses to 
variables that the programmer identifies as being shared, typically with a keyword or 
another language feature.  This guarantees SC executions for certain programs classified 
as data-race-free (all accesses to shared locations are properly synchronized). 
 
Alternatively, false – It could be argued that local fences are not sufficient without 
assuming multi-copy atomicity.  Whether SC can be implemented on top of a non-multi-
copy-atomic memory model depends on the ISA providing global barriers to enforce 
ordering with respect to accesses in threads other than the thread issuing the barrier. 
 

iii. (4 pt) Suppose an ISA specifies a non-multi-copy-atomic memory model, but a particular 
hardware implementation provides sequential consistency.  Will software written for this 
ISA execute correctly on this machine?  
 
Yes/True – As sequential consistency mandates multi-copy atomicity and is therefore a 
stronger form of memory consistency, SC executions are a proper subset of the execution 
outcomes permitted by the less restrictive non-multi-copy-atomic model.  Software that is 
correctly written with the proper fences necessary to avoid data races under the weaker 
model would continue to execute correctly on this hardware implementation.  The 
hardware implicitly enforces the same ordering constraints that fences would; the fence 
instructions would be treated by this implementation as NOPs. 
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iv. (4 pt) Suppose we have a sequentially consistent multi-core processor with a cache-
coherent memory system.  If we add a hardware prefetcher that prefetches directly into 
the L1 data caches, does the implementation still preserve sequential consistency? 
 
Yes/True – If there is an intervening write by another core between the prefetch and the 
load, the prefetched line will be invalidated by the coherence protocol before the write, 
and the load will still observe the same value as if no prefetching occurred.  (It is not 
sufficient to merely assert that coherence maintains consistency without explaining how 
stale prefetches are erased and that the cores continue to issue loads/stores in the same 
order, as coherence alone does not imply any particular memory consistency model.) 
 

6.B (15 pt) Comparing Memory Models 

For each of the following pairs of memory models, describe a hardware optimization that would 
be difficult to implement under the stricter model but easier to implement under the weaker 
model, and explain why. 

Additionally, for the following code sequences, provide an example final result that would not be 
legal in the stricter model but would be legal in the weaker model.  Variables A, B, and C are 
non-overlapping in memory and are initialized to 0. 

Core 0 Core 1 Core 2 
li t3, 1 
lw t1, (A) 
sw t3, (B) 
fence r, r 
lw t2, (C) 

li t3, 2 
lw t1, (A) 
sw t3, (B) 
fence r, r 
lw t2, (C) 

li t2, 3 
sw t2, (C) 
lw t1, (B) 
sw t2, (A) 

 

All sequentially consistent results are listed in this table, which are not valid answers for any of 
the subsequent parts. 

C0.t1 C0.t2 C1.t1 C1.t2 C2.t1 

0 0 0 0 1 
0 0 0 0 2 
0 0 0 3 1 
0 0 0 3 2 
0 0 3 3 1 
0 3 0 0 1 
0 3 0 0 2 
0 3 0 3 0 
0 3 0 3 1 
0 3 0 3 2 
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0 3 3 3 0 
0 3 3 3 1 
3 3 0 0 2 
3 3 0 3 0 
3 3 0 3 2 
3 3 3 3 0 

 

i. (5 pt) SC → TSO 
 
Optimization: Private write buffers 
TSO enables local buffering of stores with bypassing, since W→R ordering is relaxed. 

C0.t1 C0.t2 C1.t1 C1.t2 C2.t1 

0 0 0 0 0 
0 0 0 3 0 
0 0 3 3 0 
0 3 0 0 0 
3 3 0 0 0 

 

ii. (5 pt) TSO → Weak multi-copy-atomic 
 
Optimization: Out-of-order execution of loads and stores 
Weak memory models relax all orderings between reads and writes, enabling aggressive 
out-of-order execution of loads and stores. 

C0.t1 C0.t2 C1.t1 C1.t2 C2.t1 

0 0 3 0 0 
0 0 3 0 1 
0 0 3 0 2 
0 0 3 3 2 
0 3 3 0 0 
0 3 3 0 1 
0 3 3 0 2 
0 3 3 3 2 
3 0 0 0 0 
3 0 0 0 1 
3 0 0 0 2 
3 0 0 3 0 
3 0 0 3 1 
3 0 0 3 2 
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3 0 3 0 0 
3 0 3 0 1 
3 0 3 0 2 
3 0 3 3 0 
3 0 3 3 1 
3 0 3 3 2 
3 3 0 0 1 
3 3 0 3 1 
3 3 3 0 0 
3 3 3 0 1 
3 3 3 0 2 
3 3 3 3 1 
3 3 3 3 2 

 

iii. (5 3 pt) Weak multi-copy-atomic → Weak non-multi-copy-atomic 
 
Optimization: Shared hierarchical buffers 
Without multi-copy atomicity, a write can be partially visible to some cores without 
being visible to all cores. 
 

As originally presented, this problem actually contains a subtle bug which prevents any new 
results from appearing in the weak non-multi-copy-atomic model, since all 48 possible outcomes 
already manifest under the weak multi-copy-atomic model.  For non-multi-copy atomicity to 
produce an observable effect, the code must be amended slightly so that Cores 0 and 1 do not 
execute an identical sequence of memory operations. 

The fixed code is a variation of the Independent Read Independent Write (IRIW) litmus test: 

Core 0 Core 1 Core 2 
li t3, 1 
lw t1, (A) 
sw t3, (B) 
fence r, r 
lw t2, (C) 

li t3, 2 
lw t1, (C) # changed 
sw t3, (B) 
fence r, r 
lw t2, (A) # changed 

li t2, 3 
sw t2, (C) 
lw t1, (B) 
sw t2, (A) 

 
Then this result implies that Cores 0 and 1 do not observe the same order of stores to A and C: 

C0.t1 C0.t2 C1.t1 C1.t2 C2.t1 

3 0 3 0 0 
 
Full credit was given for effort, and additional credit was given for realizing that no new results 
were possible compared to the weak multi-copy-atomic model. 
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Problem 7: (27 points) Synchronization 

7.A (3 pt) Uniprocessor Atomics 

Why would atomic synchronization instructions (AMO, CAS, LR/SC, etc.) be used in a single-
core processor with no hardware multithreading? 

Atomic primitives still benefit a system that uses preemptive multitasking to context switch 
between multiple processes on the same core.  Processes, software threads, and interrupt handlers 
accessing shared memory can be synchronized without disabling interrupts in critical sections. 

Unrelated to synchronization, vector AMOs can be used to vectorize some read-modify-write 
sequences with RAW memory dependencies, such as parallel reductions or histograms. 

 

7.B (4 pt) Emulating LR/SC 

Suppose we are attempting to perform binary translation of a program compiled for an ISA that 
provides only load-reserved/store-conditional (LR/SC) instructions into another ISA that 
provides only a compare-and-swap (CAS) instruction.  Is the behavior of the translated 
instruction sequence on the right equivalent to the original instruction sequence on the left? 

Assume that x1 points to an aligned word and that lw reads the value atomically. 

Original Translated 
# x1: pointer 
# x2: old value 
# x3: new value 
# x4: 0=success, 1=failure 
retry: 
  lr.w x2, (x1) 
  ...    # compute x3 from x2 
  sc.w x4, x3, (x1) 
  bnez x4, retry 

# x1: pointer 
# x2: old value 
# x3: new value 
# x4: 0=success, 1=failure 
retry: 
  lw x2, (x1)          # emulate lr.w 
  ...                  # compute x3 from x2 
  cas x4, (x1), x2, x3 # emulate sc.w 
  bnez x4, retry 

 

No, CAS cannot detect whether the memory location x1 has been overwritten with the same 
value read by lw.  Thus, there are situations where LR/SC fails since the intervening write clears 
the reservation, but CAS succeeds (i.e., the ABA problem). 

There is another subtler difference in that the SC may still succeed even if the same thread writes 
a different value to x1 with a regular store between the LR and SC (depending on the semantics 
of SC and how reservations are implemented), whereas CAS would fail the comparison if the 
value in memory is mutated. 
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7.C (11 pt) Optimizing LR/SC 

Suppose we are looking to optimize LR/SC for a situation in which there are many readers and a 
few writers of a shared variable.  We propose the following modifications to the cache-based 
implementation described in lecture under an MSI coherence protocol: 

• The LR initially obtains the cache line in the shared state instead of the modified state. 
• The reservation is cleared if the line is invalidated or if another store from the local core 

modifies the same address before the SC. 
• If the reservation is intact, the SC attempts to upgrade the line from the shared state to the 

modified state.  If the coherence transaction completes without an intervening 
invalidation, the SC succeeds. 

 

i. (4 pt) How does this modification improve forward progress? 
 
In the original implementation, the reservation is cleared whenever the line moves out of 
the modified state, which can happen if another sharer reads the line with a regular load.  
This alternative scheme allows readers to avoid disturbing the reservation before the SC 
is attempted, which improves the probability of success. 
 
 

ii. (4 pt) For a constrained LR/SC instruction sequence in which no other loads and stores 
appear between the LR and SC and the shared variable is placed in its own cache line 
with no other variables, does this modification ensure that livelock cannot occur? 
 
Yes, if a SC fails due to invalidation, then some other SC or store must have succeeded.  
The restrictions on the LR/SC sequence and variable placement prevent voluntary 
eviction and false sharing from invalidating the line and clearing the reservation. 
 
Note that this question is specifically concerned about livelock freedom, not starvation 
freedom – an individual thread might never succeed at SC due to contention, but the 
system as a whole always makes progress somewhere. 
 
 

iii. (3 pt) We would like to avoid the extra coherence traffic needed to upgrade the line from 
the shared to the modified state when no other readers access the line between the LR and 
SC.  Could a similar optimization be applied to a MESI coherence protocol? 
 
Yes: The LR acquires the line in the exclusive state.  Downgrading the line from 
exclusive to shared does not cause the reservation to be cleared.  The SC succeeds only if 
the line has either continuously existed in the exclusive state, which is then silently 
upgraded to modified, or if it is upgraded from shared to modified without an intervening 
invalidation. 
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This does reintroduce livelock as a possibility, but for the given use case, forward 
progress is still improved on average compared to the original MESI-based scheme from 
lecture.  The relatively fewer writers (using LR) are less of a concern than the many 
readers (using regular loads), which now do not interfere with reservations. 
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7.D (9 pt) Parallel Reduction 

Consider the following code which finds the index of the maximum element in an array of 32-bit 
integers.  The work is split between multiple threads.  Each thread first searches the array 
between the start and end indices uniquely assigned to it, and then conditionally updates the 
global index variable with its result. 

    # a0: start index 
    # a1: end index (non-inclusive) 
    # a2: base address of array 
    # t0: index of local maximum element 
    # t1: value of local maximum element 
 
    slli t2, a0, 2    # scale start index by element size 
    add t2, a2, t2    # compute pointer to array[start] 
    mv t0, a0         # initialize t0 to start index 
    lw t1, 0(t2)      # initialize t1 to array[start] 
    addi a0, a0, 1    # increment current index 
    addi t2, t2, 4    # bump pointer 
 
loop: 
    lw t3, 0(t2)      # load current element 
    addi t2, t2, 4    # bump pointer 
    bge t1, t3, skip  # compare current element to local maximum 
    mv t0, a0         # update local maximum index 
    mv t1, t3         # update local maximum value 
skip: 
    addi a0, a0, 1    # update current index 
    bltu a0, a1, loop 
 
reduce: 
    # TODO 

 

i. (4 pt) The code is run on a single-issue vertically threaded processor.  If threads are 
switched every cycle in a fixed round-robin schedule, what is the minimum number of 
threads required to avoid stalls for any input array?  Ignore the prologue and final 
reduction, and consider only the steady-state execution of the loop over many iterations.  
Assume that loads have a 50-cycle latency, arithmetic instructions have a 1-cycle latency, 
and the latency for a taken branch is two cycles. 
 
The longest stall is the load-use dependency from lw to bge in the same loop iteration.  
The addi between lw and bge hides one cycle of latency per thread.  If thread 0 issues 
lw on cycle 0, bge will issue on cycle 2N, where N is the number of threads. 
 
2N ≤ 50 
N = ceil(50 / 2) = 25 threads 
25 threads is also sufficient to hide the overhead of taken branches. 
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ii. (5 pt) Write code to perform the final reduction atomically using LR/SC.  If the local 
maximum element is greater than the current global maximum element, the thread 
updates the global index variable.  You may use any available temporary registers. 
 
• t0 holds the index of the local maximum element found by the thread after the loop 
• t1 holds the value of the local maximum element found by the thread 
• a2 points to the base of the array 
• a3 points to the global index variable in memory 

Assume that each thread maintains a separate reservation for LR/SC. 

The first few instructions are provided for you. 

 

reduce: 
    lw t2, (a3)       # load global index 
    slli t3, t2, 2    # scale global index by element size 
    add t3, a2, t3    # compute pointer to global maximum 
    lw t3, (t3)       # load value of global maximum 
 
    # TODO: Finish reduction code 
 
    bge t3, t1, done    # skip if global max >= local max 
    lr.w t4, (a3)       # acquire reservation on global index 
    bne t2, t4, reduce  # retry if global index has changed 
    sc.w t2, t0, (a3)   # attempt to update global index 
    bnez t2, reduce     # retry if update failed 
done: 

 

• The code is structured like a CAS operation to avoid placing the second lw in the middle 
of the LR/SC sequence, which could otherwise prevent forward progress.  (Consider the 
possibility of a cache conflict that evicts the line corresponding to the reserved address.) 

• Loading the global maximum value does not require an LR.  Although shared, the input 
array is not modified by any thread. 
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