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Problem 1: (20 points) Iron Law  

Complete each of the following statements, referencing at least one component of the Iron Law 

in your answer. 

Example: Adding caches might decrease time-per-program when ... 

the code regularly hits in the cache, reducing the frequency of stalls and decreasing cycles-per-

instruction. 

 

A. (4 pt) Using interrupts for I/O instead of polling might increase time-per-program when ... 

 

 

 

 

 

 

 

 

 

 

B. (4 pt) Applying trace scheduling might decrease time-per-program when ... 

 

 

 

 

 

 

 

 

 

 

C. (4 pt) Using coherent DMA to maintain I/O coherence instead of cache-flush instructions 

might decrease time-per-program when ... 
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D. (4 pt) Using dynamic binary translation instead of a software interpreter for non-native code 

might decrease time-per-program when... 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. (4 pt) A VLIW encoding scheme that compresses NOP fields in the instruction encoding 

might decrease time-per-program when... 
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Problem 2: (28 points) Virtual Memory 

Consider a system which uses a two-level page-based virtual memory system. 

• Pages are 16 bytes 

• PTEs are 4 bytes 

• Memory is byte-addressed 

• The system is initialized with only the base page table allocated 

• Physical pages are allocated from lower to higher PPNs incrementally 

• The base page table is architecturally mandated to be at physical address 0x00, so a PTE 

containing value 0x00 is effectively an “invalid” PTE (no valid bit is necessary) 

• The PTE is entirely reserved for a PPN (no valid, status, or permission bits) 

2.A (12 pt) Paging Behavior 

Fill out the contents of physical memory after value 0x6C is written to virtual address 0x94. 

You only need to show the values of the memory locations that are written/changed. 

Address Value 

0x00  

0x04  

0x08  

0x0c  

0x10  

0x14  

0x18  

0x1c  

0x20  

0x24  

0x28  

0x2c  

0x30  

0x34  

0x38  

0x3c  

0x40  

0x44  

0x48  

0x4c  
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2.B (4 pt) Virtual Address Space 

What is the size of the virtual address space of this virtual memory system in bytes? 

 

 

 

 

 

 

 

2.C (4 pt) Physical Address Space 

How much physical memory does this virtual memory system support? 

 

 

 

 

 

 

 

2.D (4 pt) VIPT L1 

Explain briefly why L1 caches are often designed to be VIPT (virtually indexed, physically 

tagged). 

 

 

 

 

 

 

 

 

 

2.E (4 pts) PIPT L2 

Explain briefly why L2 caches are often designed to be PIPT (physically indexed, physically 

tagged). 
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Problem 3: (28 points) Pipelining and Out-of-Order Execution 

 

3.A (12 pt) ROB Behavior 

In this question, we consider a data-in-ROB design of an out-of-order core.  For the following 

instructions, fill out the contents of the ROB after a large amount of time has passed, but the first 

load has not yet retrieved a value from memory. 

0x800: li   t0, 0x4 

0x804: lw   t1, 0(t0) 

0x808: addi t1, t1, 0x4 

0x80c: lw   t0, 0(t1) 

Address 0x4 contains value 0x4 initially.  The first row is partially completed for you. 

IDX PC issued completed p1 src1 pd dest wbdata 

0 0x800 Y Y Y N/A    

1 0x804        

2 0x808        

3 0x80c        

 

 

3.B (2 pt) PC in ROB 

The PC field in the ROB is not used when instructions issue.  What is the PC field used for? 
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3.C (14 pt) Hazard Identification 

For each of the following microarchitectural optimizations, circle the types of hazards that it 

addresses.  Some optimizations may address multiple hazards, and some hazards may be 

addressed by multiple optimizations. 

 

i. Register renaming: 

 

RAW WAR WAW RAR Control Structural 

 

 

ii. Bypass paths: 

 

RAW WAR WAW RAR Control Structural 

 

 

iii. Branch prediction: 

 

RAW WAR WAW RAR Control Structural 

 

 

iv. Non-blocking data cache: 

 

RAW WAR WAW RAR Control Structural 

 

 

v. Load forwarding out of speculative store buffer 

 

RAW WAR WAW RAR Control Structural 

 

 

vi. Out-of-order execution: 

 

RAW WAR WAW RAR Control Structural 

 

 

vii. Fully pipelined functional units: 

 

RAW WAR WAW RAR Control Structural 
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Problem 4: (20 points) Vector Architectures 

In this problem, we consider an algorithm for transposing a square matrix in-place by swapping 

rows and columns.  The C code is provided below.  The matrix elements are 32-bit integers. 

 
void transpose(size_t n, int *mat) { 
  for (size_t i = 0; i < n; i++) { 

    for (size_t j = i + 1; j < n; j++) { 

      int t = mat[(i*n)+j]; 

      mat[(i*n)+j] = mat[(j*n)+i]; 

      mat[(j*n)+i] = t; 

   } 

} 

 

An abbreviated listing of potentially relevant vector load/store instructions is provided below. 

 

Vector Load/Store Instructions 

vle32.v vd, (rs1), vm vd[i] = mem[(rs1) + i*4] 

vse32.v vs3, (rs1), vm mem[(rs1) + i*4] = vs3[i] 

vlse32.v vd, (rs1), rs2, vm vd[i] = mem[(rs1) + i*rs2] 

vsse32.v vs3, (rs1), rs2, vm mem[(rs1) + i*rs2] = vs3[i] 

vluxei32.v vd, (rs1), vs2, vm vd[i] = mem[(rs1) + vs2[i]] (unordered) 

vsuxei32.v vs3, (rs1), vs2, vm mem[(rs1) + vs2[i]] = vs3[i] (unordered) 

vloxei32.v vd, (rs1), vs2, vm vd[i] = mem[(rs1) + vs2[i]] (ordered) 

vsoxei32.v vs3, (rs1), vs2, vm mem[(rs1) + vs2[i]] = vs3[i] (ordered) 
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4.A (12 pt) Vectorizing Transpose 

Fill out the following vector code for vectorizing matrix transpose.  

    # a0: n 

    # a1: mat 

transpose: 

    li   t0, 1 

    bleu a0, t0, end   # skip if n <= 1 

    __________________ # initialize t0 with stride in bytes 

    __________________ # optional line if needed 

    addi a0, a0, -1    # decrement n 

 

loop_i: 

    mv   t2, a0        # number of elements to swap = n - (i+1) 

    addi t3, a1, 4     # temporary pointer to row at mat[i][i+1] 

    add  t4, a1, t0    # temporary pointer to column mat[i+1][i] 

    addi a1, t4, 4     # bump mat pointer by (n + 1) elements 

 

loop_j: 

    vsetvli t5, t2, e32, m1, ta, ma 

    __________________    # vector load row mat[i][...] 

    __________________    # vector load column mat[...][i] 

    __________________    # vector store column mat[...][i] 

    __________________    # vector store row mat[i][...] 

 

    sub  t2, t2, t5       # decrement vl 

    mul  t6, t5, t0       # vl*stride in bytes 

    slli t5, t5, 2        # vl in bytes 

    add  t3, t3, t5       # bump row pointer 

    add  t4, t4, t6       # bump column pointer 

    bnez t2, loop_j 

 

    addi a0, a0, -1       # decrement n 

    bnez a0, loop_i 

 

end: 

    ret 
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4.B (4 pt) Vectors and Virtual Memory 

Suppose n is very large (n > 1024).  What is the minimum number of TLB entries as a function 

of the vector length (VL) that is necessary to avoid all non-compulsory TLB?  Assume the page 

size is 4 KiB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.C (4 pt) Reducing Cache Misses 

Briefly explain how you could restructure the code to dramatically reduce the frequency of cache 

misses. 
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Problem 5: (22 points) Cache Coherence 

5.A (6 pt) Out-of-order Coherence 

Consider an out-of-order processor that implements conservative out-of-order load execution as 

discussed in lecture.  A load is issued as soon as its address calculation is completed (potentially 

out of program order) and the following conditions are met: 

• All addresses for older stores in the speculative store buffer are known. 

• If the load address matches one of those entries in the speculative store buffer, the store 

data from the youngest store older than the load is available for bypassing. 

 

i. (4 pt) This approach behaves correctly in a single-core system.  How can this approach 

cause a coherence violation in a multi-core system? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii. (2 pt) Propose a simple solution for the coherence problem discussed above. 
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5.A (16 pt) Directory-based MOSI Coherence 

Consider the baseline directory-based cache-coherence protocol discussed in Handout 6 

(distributed with exam), which implements an MSI protocol. We consider extending that 

protocol to support MOSI coherence in a system which implements cache-to-cache links. 

In the diagram of the adjusted system below, notice that DRAM is distinct from the directory. 

 

 

 

 

 

 

 

 

 

 

 

 

To support the MOSI protocol in the directory-based system, we make the following 

modifications: 

• New cache state C-owned for the O state in MOSI 

o If a cache line is in this state, the line is dirty and read-only, and the owning 

cache is responsible for providing data to other caches. 

o The C-owned state can only be entered from the C-exclusive state. 

o A single cache may have the line in C-owned while multiple other caches have 

the same line in C-shared. 

• New directory state O(id, dir) 

o Cache <id> is the owner of the line, and all caches in dir are sharers. 

• New message type FwdShReq(Home, id, id`, a) 

o This is sent from the directory to cache <id> when the directory is in the W or O 

state and has received a ShReq from cache <id`>. 

o When cache <id> receives this message, it moves the line to the C-owned state 

and sends ShRep directly to cache <id`>. 

o Note that FwdShReq subsumes WbReq/WbRep in the original MSI protocol. 

• New message type FwdExReq(Home, id, id`, a) 

o This is sent from the directory to cache <id> when the directory is in the W or O 

state and has received an ExReq from cache <id`>. 

o When cache <id> receives this message, it invalidates its copy of the line and 

sends ExRep directly to cache <id`>. 

o Note that FwdExReq subsumes FlushReq/FlushRep in the original MSI protocol. 

• Caches can send ShRep(id, id`, data(a)) and ExRep(id, id`, data(a)). 

o These messages go through the cache-to-cache links, bypassing the directory. 

Directory 

Core 0 

Cache 0 

Core 1 

Cache 1 

DRAM 
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i. (12 pt) Complete the table showing the sequence of transactions in this MOSI system. 

In each line, show the state of the caches and directories after the entire load/store has 

been completed.  (Ignore transient states.  Assume that every message is atomic). 

 
 

Cache 0 

State 

Cache 1 

State 

Directory 

State 

Message(s) sent 

C0: read a C-shared C-nothing R({0}) ShReq(0, Home, a) 

ShRep(Home, 0, data(a)) 

C0: write a     

C1: read a     

C1: write a     

C1: evict a     
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ii. (4 pt) Describe a system in which this directory-based MOSI protocol would provide 

significant advantages compared to the baseline MSI protocol. 
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Problem 6: (31 points) Memory Consistency 

6.A (16 pt) True/False 

Indicate whether each statement is true or false and briefly explain your reasoning: 

i. (4 pt) Sequential consistency is guaranteed if all processors have in-order pipelines. 

 

 

 

 

 

 

 

 

 

 

 

ii. (4 pt) A high-level language with a sequentially consistent memory model can be 

implemented on a ISA with a weaker memory model if fence instructions are provided. 

 

 

 

 

 

 

 

 

 

 

 

iii. (4 pt) Suppose an ISA specifies a non-multi-copy-atomic memory model, but a particular 

hardware implementation provides sequential consistency.  Will software written for this 

ISA execute correctly on this machine?  
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iv. (4 pt) Suppose we have a sequentially consistent multi-core processor with a cache-

coherent memory system.  If we add a hardware prefetcher that prefetches directly into 

the L1 data caches, does the implementation still preserve sequential consistency? 

 

 

 

 

 

 

 

 

 

 

6.B (15 pt) Comparing Memory Models 

For each of the following pairs of memory models, describe a hardware optimization that would 

be difficult to implement under the stricter model but easier to implement under the weaker 

model, and explain why. 

Additionally, for the following code sequences, provide an example final result that would not be 

legal in the stricter model but would be legal in the weaker model.  Variables A, B, and C are 

non-overlapping in memory and are initialized to 0. 

Core 0 Core 1 Core 2 

li t3, 1 

lw t1, (A) 

sw t3, (B) 

fence r, r 

lw t2, (C) 

li t3, 2 

lw t1, (A) 

sw t3, (B) 

fence r, r 

lw t2, (C) 

li t2, 3 

sw t2, (C) 

lw t1, (B) 

sw t2, (A) 

 

i. (5 pt) SC → TSO 

C0.t1 C0.t2 C1.t1 C1.t2 C1.t1 
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ii. (5 pt) TSO → Weak multi-copy-atomic 

C0.t1 C0.t2 C1.t1 C1.t2 C1.t1 

     

 

 

 

 

 

 

 

 

 

 

iii. (5 pt) Weak multi-copy-atomic → Weak non-multi-copy-atomic 

C0.t1 C0.t2 C1.t1 C1.t2 C1.t1 
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Problem 7: (27 points) Synchronization 

7.A (3 pt) Uniprocessor Atomics 

Why would atomic synchronization instructions (AMO, CAS, LR/SC, etc.) be used in a single-

core processor with no hardware multithreading? 

 

 

 

 

 

 

 

 

 

7.B (4 pt) Emulating LR/SC 

Suppose we are attempting to perform binary translation of a program compiled for an ISA that 

provides only load-reserved/store-conditional (LR/SC) instructions into another ISA that 

provides only a compare-and-swap (CAS) instruction.  Is the behavior of the translated 

instruction sequence on the right equivalent to the original instruction sequence on the left? 

Assume that x1 points to an aligned word and that lw reads the value atomically. 

Original Translated 

# x1: pointer 

# x2: old value 

# x3: new value 

# x4: 0=success, 1=failure 

retry: 

  lr.w x2, (x1) 

  ...    # compute x3 from x2 

  sc.w x4, x3, (x1) 

  bnez x4, retry 

# x1: pointer 

# x2: old value 

# x3: new value 

# x4: 0=success, 1=failure 

retry: 

  lw x2, (x1)          # emulate lr.w 

  ...                  # compute x3 from x2 

  cas x4, (x1), x2, x3 # emulate sc.w 

  bnez x4, retry 
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7.C (11 pt) Optimizing LR/SC 

Suppose we are looking to optimize LR/SC for a situation in which there are many readers and a 

few writers of a shared variable.  We propose the following modifications to the cache-based 

implementation described in lecture under an MSI coherence protocol: 

• The LR initially obtains the cache line in the shared state instead of the modified state. 

• The reservation is cleared if the line is invalidated or if another store from the local core 

modifies the same address before the SC. 

• If the reservation is intact, the SC attempts to upgrade the line from the shared state to the 

modified state.  If the coherence transaction completes without an intervening 

invalidation, the SC succeeds. 

 

i. (4 pt) How does this modification improve forward progress? 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii. (4 pt) For a constrained LR/SC instruction sequence in which no other loads and stores 

appear between the LR and SC and the shared variable is placed in its own cache line 

with no other variables, does this modification ensure that livelock cannot occur? 
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iii. (3 pt) We would like to avoid the extra coherence traffic needed to upgrade the line from 

the shared to the modified state when no other readers access the line between the LR and 

SC.  Could a similar optimization be applied to a MESI coherence protocol? 
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7.D (9 pt) Parallel Reduction 

Consider the following code which finds the index of the maximum element in an array of 32-bit 

integers.  The work is split between multiple threads.  Each thread first searches the array 

between the start and end indices uniquely assigned to it, and then conditionally updates the 

global index variable with its result. 

    # a0: start index 

    # a1: end index (non-inclusive) 

    # a2: base address of array 

    # t0: index of local maximum element 

    # t1: value of local maximum element 

 

    slli t2, a0, 2    # scale start index by element size 

    add t2, a2, t2    # compute pointer to array[start] 

    mv t0, a0         # initialize t0 to start index 

    lw t1, 0(t2)      # initialize t1 to array[start] 

    addi a0, a0, 1    # increment current index 

    addi t2, t2, 4    # bump pointer 

 

loop: 

    lw t3, 0(t2)      # load current element 

    addi t2, t2, 4    # bump pointer 

    bge t1, t3, skip  # compare current element to local maximum 

    mv t0, a0         # update local maximum index 

    mv t1, t3         # update local maximum value 

skip: 

    addi a0, a0, 1    # update current index 

    bltu a0, a1, loop 

 

reduce: 

    # TODO 

 

i. (4 pt) The code is run on a single-issue vertically threaded processor.  If threads are 

switched every cycle in a fixed round-robin schedule, what is the minimum number of 

threads required to avoid stalls for any input array?  Ignore the prologue and final 

reduction, and consider only the steady-state execution of the loop over many 

iterations.  Assume that loads have a 50-cycle latency, arithmetic instructions have a 1-

cycle latency, and the latency for a taken branch is two cycles. 
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ii. (5 pt) Write code to perform the final reduction atomically using LR/SC.  If the local 

maximum element is greater than the current global maximum element, the thread 

updates the global index variable.  You may use any available temporary registers. 

 

• t0 holds the index of the local maximum element found by the thread after the loop 

• t1 holds the value of the local maximum element found by the thread 

• a2 points to the base of the array 

• a3 points to the global index variable in memory 

Assume that each thread maintains a separate reservation for LR/SC. 

The first few instructions are provided for you. 

 

reduce: 

    lw t2, (a3)       # load global index 

    slli t3, t2, 2    # scale global index by element size 

    add t3, a2, t3    # compute pointer to global maximum 

    lw t3, (t3)       # load value of global maximum 

 

    # TODO: Finish reduction code 
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