
Q1-1

Problem 1: (20 points) Iron Law

Complete each of the following statements, referencing at least one component of the Iron Law

in your answer.

Example: Adding caches might decrease time-per-program when ...

the code regularly hits in the cache, reducing the frequency of stalls and decreasing cycles-per-

instruction.

A. (4 pt) Using interrupts for I/O instead of polling might increase time-per-program when ...

B. (4 pt) Applying trace scheduling might decrease time-per-program when ...

C. (4 pt) Using coherent DMA to maintain I/O coherence instead of cache-flush instructions

might decrease time-per-program when ...

Q1-2

D. (4 pt) Using dynamic binary translation instead of a software interpreter for non-native code

might decrease time-per-program when...

E. (4 pt) A VLIW encoding scheme that compresses NOP fields in the instruction encoding

might decrease time-per-program when...

Q2-1

Problem 2: (28 points) Virtual Memory

Consider a system which uses a two-level page-based virtual memory system.

• Pages are 16 bytes

• PTEs are 4 bytes

• Memory is byte-addressed

• The system is initialized with only the base page table allocated

• Physical pages are allocated from lower to higher PPNs incrementally

• The base page table is architecturally mandated to be at physical address 0x00, so a PTE

containing value 0x00 is effectively an “invalid” PTE (no valid bit is necessary)

• The PTE is entirely reserved for a PPN (no valid, status, or permission bits)

2.A (12 pt) Paging Behavior

Fill out the contents of physical memory after value 0x6C is written to virtual address 0x94.

You only need to show the values of the memory locations that are written/changed.

Address Value

0x00

0x04

0x08

0x0c

0x10

0x14

0x18

0x1c

0x20

0x24

0x28

0x2c

0x30

0x34

0x38

0x3c

0x40

0x44

0x48

0x4c

Q2-2

2.B (4 pt) Virtual Address Space

What is the size of the virtual address space of this virtual memory system in bytes?

2.C (4 pt) Physical Address Space

How much physical memory does this virtual memory system support?

2.D (4 pt) VIPT L1

Explain briefly why L1 caches are often designed to be VIPT (virtually indexed, physically

tagged).

2.E (4 pts) PIPT L2

Explain briefly why L2 caches are often designed to be PIPT (physically indexed, physically

tagged).

Q3-1

Problem 3: (28 points) Pipelining and Out-of-Order Execution

3.A (12 pt) ROB Behavior

In this question, we consider a data-in-ROB design of an out-of-order core. For the following

instructions, fill out the contents of the ROB after a large amount of time has passed, but the first

load has not yet retrieved a value from memory.

0x800: li t0, 0x4

0x804: lw t1, 0(t0)

0x808: addi t1, t1, 0x4

0x80c: lw t0, 0(t1)

Address 0x4 contains value 0x4 initially. The first row is partially completed for you.

IDX PC issued completed p1 src1 pd dest wbdata

0 0x800 Y Y Y N/A

1 0x804

2 0x808

3 0x80c

3.B (2 pt) PC in ROB

The PC field in the ROB is not used when instructions issue. What is the PC field used for?

Q3-2

3.C (14 pt) Hazard Identification

For each of the following microarchitectural optimizations, circle the types of hazards that it

addresses. Some optimizations may address multiple hazards, and some hazards may be

addressed by multiple optimizations.

i. Register renaming:

RAW WAR WAW RAR Control Structural

ii. Bypass paths:

RAW WAR WAW RAR Control Structural

iii. Branch prediction:

RAW WAR WAW RAR Control Structural

iv. Non-blocking data cache:

RAW WAR WAW RAR Control Structural

v. Load forwarding out of speculative store buffer

RAW WAR WAW RAR Control Structural

vi. Out-of-order execution:

RAW WAR WAW RAR Control Structural

vii. Fully pipelined functional units:

RAW WAR WAW RAR Control Structural

Q4-1

Problem 4: (20 points) Vector Architectures

In this problem, we consider an algorithm for transposing a square matrix in-place by swapping

rows and columns. The C code is provided below. The matrix elements are 32-bit integers.

void transpose(size_t n, int *mat) {
 for (size_t i = 0; i < n; i++) {

 for (size_t j = i + 1; j < n; j++) {

 int t = mat[(i*n)+j];

 mat[(i*n)+j] = mat[(j*n)+i];

 mat[(j*n)+i] = t;

 }

}

An abbreviated listing of potentially relevant vector load/store instructions is provided below.

Vector Load/Store Instructions

vle32.v vd, (rs1), vm vd[i] = mem[(rs1) + i*4]

vse32.v vs3, (rs1), vm mem[(rs1) + i*4] = vs3[i]

vlse32.v vd, (rs1), rs2, vm vd[i] = mem[(rs1) + i*rs2]

vsse32.v vs3, (rs1), rs2, vm mem[(rs1) + i*rs2] = vs3[i]

vluxei32.v vd, (rs1), vs2, vm vd[i] = mem[(rs1) + vs2[i]] (unordered)

vsuxei32.v vs3, (rs1), vs2, vm mem[(rs1) + vs2[i]] = vs3[i] (unordered)

vloxei32.v vd, (rs1), vs2, vm vd[i] = mem[(rs1) + vs2[i]] (ordered)

vsoxei32.v vs3, (rs1), vs2, vm mem[(rs1) + vs2[i]] = vs3[i] (ordered)

Q4-2

4.A (12 pt) Vectorizing Transpose

Fill out the following vector code for vectorizing matrix transpose.

 # a0: n

 # a1: mat

transpose:

 li t0, 1

 bleu a0, t0, end # skip if n <= 1

 __________________ # initialize t0 with stride in bytes

 __________________ # optional line if needed

 addi a0, a0, -1 # decrement n

loop_i:

 mv t2, a0 # number of elements to swap = n - (i+1)

 addi t3, a1, 4 # temporary pointer to row at mat[i][i+1]

 add t4, a1, t0 # temporary pointer to column mat[i+1][i]

 addi a1, t4, 4 # bump mat pointer by (n + 1) elements

loop_j:

 vsetvli t5, t2, e32, m1, ta, ma

 __________________ # vector load row mat[i][...]

 __________________ # vector load column mat[...][i]

 __________________ # vector store column mat[...][i]

 __________________ # vector store row mat[i][...]

 sub t2, t2, t5 # decrement vl

 mul t6, t5, t0 # vl*stride in bytes

 slli t5, t5, 2 # vl in bytes

 add t3, t3, t5 # bump row pointer

 add t4, t4, t6 # bump column pointer

 bnez t2, loop_j

 addi a0, a0, -1 # decrement n

 bnez a0, loop_i

end:

 ret

Q4-3

4.B (4 pt) Vectors and Virtual Memory

Suppose n is very large (n > 1024). What is the minimum number of TLB entries as a function

of the vector length (VL) that is necessary to avoid all non-compulsory TLB? Assume the page

size is 4 KiB.

4.C (4 pt) Reducing Cache Misses

Briefly explain how you could restructure the code to dramatically reduce the frequency of cache

misses.

Q5-1

Problem 5: (22 points) Cache Coherence

5.A (6 pt) Out-of-order Coherence

Consider an out-of-order processor that implements conservative out-of-order load execution as

discussed in lecture. A load is issued as soon as its address calculation is completed (potentially

out of program order) and the following conditions are met:

• All addresses for older stores in the speculative store buffer are known.

• If the load address matches one of those entries in the speculative store buffer, the store

data from the youngest store older than the load is available for bypassing.

i. (4 pt) This approach behaves correctly in a single-core system. How can this approach

cause a coherence violation in a multi-core system?

ii. (2 pt) Propose a simple solution for the coherence problem discussed above.

Q5-2

5.A (16 pt) Directory-based MOSI Coherence

Consider the baseline directory-based cache-coherence protocol discussed in Handout 6

(distributed with exam), which implements an MSI protocol. We consider extending that

protocol to support MOSI coherence in a system which implements cache-to-cache links.

In the diagram of the adjusted system below, notice that DRAM is distinct from the directory.

To support the MOSI protocol in the directory-based system, we make the following

modifications:

• New cache state C-owned for the O state in MOSI

o If a cache line is in this state, the line is dirty and read-only, and the owning

cache is responsible for providing data to other caches.

o The C-owned state can only be entered from the C-exclusive state.

o A single cache may have the line in C-owned while multiple other caches have

the same line in C-shared.

• New directory state O(id, dir)

o Cache <id> is the owner of the line, and all caches in dir are sharers.

• New message type FwdShReq(Home, id, id`, a)

o This is sent from the directory to cache <id> when the directory is in the W or O

state and has received a ShReq from cache <id`>.

o When cache <id> receives this message, it moves the line to the C-owned state

and sends ShRep directly to cache <id`>.

o Note that FwdShReq subsumes WbReq/WbRep in the original MSI protocol.

• New message type FwdExReq(Home, id, id`, a)

o This is sent from the directory to cache <id> when the directory is in the W or O

state and has received an ExReq from cache <id`>.

o When cache <id> receives this message, it invalidates its copy of the line and

sends ExRep directly to cache <id`>.

o Note that FwdExReq subsumes FlushReq/FlushRep in the original MSI protocol.

• Caches can send ShRep(id, id`, data(a)) and ExRep(id, id`, data(a)).

o These messages go through the cache-to-cache links, bypassing the directory.

Directory

Core 0

Cache 0

Core 1

Cache 1

DRAM

Q5-3

i. (12 pt) Complete the table showing the sequence of transactions in this MOSI system.

In each line, show the state of the caches and directories after the entire load/store has

been completed. (Ignore transient states. Assume that every message is atomic).

Cache 0

State

Cache 1

State

Directory

State

Message(s) sent

C0: read a C-shared C-nothing R({0}) ShReq(0, Home, a)

ShRep(Home, 0, data(a))

C0: write a

C1: read a

C1: write a

C1: evict a

Q5-4

ii. (4 pt) Describe a system in which this directory-based MOSI protocol would provide

significant advantages compared to the baseline MSI protocol.

Q6-1

Problem 6: (31 points) Memory Consistency

6.A (16 pt) True/False

Indicate whether each statement is true or false and briefly explain your reasoning:

i. (4 pt) Sequential consistency is guaranteed if all processors have in-order pipelines.

ii. (4 pt) A high-level language with a sequentially consistent memory model can be

implemented on a ISA with a weaker memory model if fence instructions are provided.

iii. (4 pt) Suppose an ISA specifies a non-multi-copy-atomic memory model, but a particular

hardware implementation provides sequential consistency. Will software written for this

ISA execute correctly on this machine?

Q6-2

iv. (4 pt) Suppose we have a sequentially consistent multi-core processor with a cache-

coherent memory system. If we add a hardware prefetcher that prefetches directly into

the L1 data caches, does the implementation still preserve sequential consistency?

6.B (15 pt) Comparing Memory Models

For each of the following pairs of memory models, describe a hardware optimization that would

be difficult to implement under the stricter model but easier to implement under the weaker

model, and explain why.

Additionally, for the following code sequences, provide an example final result that would not be

legal in the stricter model but would be legal in the weaker model. Variables A, B, and C are

non-overlapping in memory and are initialized to 0.

Core 0 Core 1 Core 2

li t3, 1

lw t1, (A)

sw t3, (B)

fence r, r

lw t2, (C)

li t3, 2

lw t1, (A)

sw t3, (B)

fence r, r

lw t2, (C)

li t2, 3

sw t2, (C)

lw t1, (B)

sw t2, (A)

i. (5 pt) SC → TSO

C0.t1 C0.t2 C1.t1 C1.t2 C1.t1

Q6-3

ii. (5 pt) TSO → Weak multi-copy-atomic

C0.t1 C0.t2 C1.t1 C1.t2 C1.t1

iii. (5 pt) Weak multi-copy-atomic → Weak non-multi-copy-atomic

C0.t1 C0.t2 C1.t1 C1.t2 C1.t1

Q7-1

Problem 7: (27 points) Synchronization

7.A (3 pt) Uniprocessor Atomics

Why would atomic synchronization instructions (AMO, CAS, LR/SC, etc.) be used in a single-

core processor with no hardware multithreading?

7.B (4 pt) Emulating LR/SC

Suppose we are attempting to perform binary translation of a program compiled for an ISA that

provides only load-reserved/store-conditional (LR/SC) instructions into another ISA that

provides only a compare-and-swap (CAS) instruction. Is the behavior of the translated

instruction sequence on the right equivalent to the original instruction sequence on the left?

Assume that x1 points to an aligned word and that lw reads the value atomically.

Original Translated

x1: pointer

x2: old value

x3: new value

x4: 0=success, 1=failure

retry:

 lr.w x2, (x1)

 ... # compute x3 from x2

 sc.w x4, x3, (x1)

 bnez x4, retry

x1: pointer

x2: old value

x3: new value

x4: 0=success, 1=failure

retry:

 lw x2, (x1) # emulate lr.w

 ... # compute x3 from x2

 cas x4, (x1), x2, x3 # emulate sc.w

 bnez x4, retry

Q7-2

7.C (11 pt) Optimizing LR/SC

Suppose we are looking to optimize LR/SC for a situation in which there are many readers and a

few writers of a shared variable. We propose the following modifications to the cache-based

implementation described in lecture under an MSI coherence protocol:

• The LR initially obtains the cache line in the shared state instead of the modified state.

• The reservation is cleared if the line is invalidated or if another store from the local core

modifies the same address before the SC.

• If the reservation is intact, the SC attempts to upgrade the line from the shared state to the

modified state. If the coherence transaction completes without an intervening

invalidation, the SC succeeds.

i. (4 pt) How does this modification improve forward progress?

ii. (4 pt) For a constrained LR/SC instruction sequence in which no other loads and stores

appear between the LR and SC and the shared variable is placed in its own cache line

with no other variables, does this modification ensure that livelock cannot occur?

Q7-3

iii. (3 pt) We would like to avoid the extra coherence traffic needed to upgrade the line from

the shared to the modified state when no other readers access the line between the LR and

SC. Could a similar optimization be applied to a MESI coherence protocol?

Q7-4

7.D (9 pt) Parallel Reduction

Consider the following code which finds the index of the maximum element in an array of 32-bit

integers. The work is split between multiple threads. Each thread first searches the array

between the start and end indices uniquely assigned to it, and then conditionally updates the

global index variable with its result.

 # a0: start index

 # a1: end index (non-inclusive)

 # a2: base address of array

 # t0: index of local maximum element

 # t1: value of local maximum element

 slli t2, a0, 2 # scale start index by element size

 add t2, a2, t2 # compute pointer to array[start]

 mv t0, a0 # initialize t0 to start index

 lw t1, 0(t2) # initialize t1 to array[start]

 addi a0, a0, 1 # increment current index

 addi t2, t2, 4 # bump pointer

loop:

 lw t3, 0(t2) # load current element

 addi t2, t2, 4 # bump pointer

 bge t1, t3, skip # compare current element to local maximum

 mv t0, a0 # update local maximum index

 mv t1, t3 # update local maximum value

skip:

 addi a0, a0, 1 # update current index

 bltu a0, a1, loop

reduce:

 # TODO

i. (4 pt) The code is run on a single-issue vertically threaded processor. If threads are

switched every cycle in a fixed round-robin schedule, what is the minimum number of

threads required to avoid stalls for any input array? Ignore the prologue and final

reduction, and consider only the steady-state execution of the loop over many

iterations. Assume that loads have a 50-cycle latency, arithmetic instructions have a 1-

cycle latency, and the latency for a taken branch is two cycles.

Q7-5

ii. (5 pt) Write code to perform the final reduction atomically using LR/SC. If the local

maximum element is greater than the current global maximum element, the thread

updates the global index variable. You may use any available temporary registers.

• t0 holds the index of the local maximum element found by the thread after the loop

• t1 holds the value of the local maximum element found by the thread

• a2 points to the base of the array

• a3 points to the global index variable in memory

Assume that each thread maintains a separate reservation for LR/SC.

The first few instructions are provided for you.

reduce:

 lw t2, (a3) # load global index

 slli t3, t2, 2 # scale global index by element size

 add t3, a2, t3 # compute pointer to global maximum

 lw t3, (t3) # load value of global maximum

 # TODO: Finish reduction code

	q1-v1
	q2-v1
	q3-v1
	q4
	q5-v1
	q6
	q7

