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1. Memory Hierarchy [24 pts]

In this question, you are asked to design a memory hierarchy with a 32-bit virtual and physical address and
8-word (32 byte) cache lines. Consider the two loops below:

Loop A:

int sum = 0;

for (int i = 0; i < 256; i++) {

for (int j = 0; j < 64; j++) {

sum += Y[i][j] * Z[i][j];

}

}

Loop B:

int sum = 0;

for (int j = 0; j < 64; j++) {

for (int i = 0; i < 256; i++) {

sum += Y[i][j] * Z[i][j];

}

}

Assume Y[0][0] is stored at address 0x0. Further assume that matrices Y and Z are stored contiguously
and that both matrices are stored in row-major order, i.e. Y[i][j] is next to Y[i][j+1] in memory and
Y[256][64] is next to Z[0][0]. sum is not stored in the cache. Also assume that caches are initially empty.
All elements of the matrices are 32-bit integers.

(a) Consider a 32KiB 4-way set-associative data cache with FIFO replacement policy. Calculate the number
of compulsory, conflict, and capacity misses that will occur when running each of Loop A and B. Show
your work below and fill out the table.

Compulsory Conflict and Capacity Total Misses

Loop A

Loop B
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(b) Suppose you implement the cache as Virtually-Indexed Physically-Tagged (VIPT). Assuming a 4 KiB
page size, is it possible to have virtual address aliasing with this cache? If so, what is the minimum
number of set-associativity that is required to avoid aliasing given that the cache size is fixed at 32
KiB? Explain your reasoning.

(c) Now, consider implementing a L2 cache in addition to the VIPT L1. The L2 cache starts off empty.
With no more than three sentences, briefly explain how an inclusive L2 cache can be used to resolve
aliasing.

(d) Suppose you implement a 256 KiB 8-way set-associative L2 cache with FIFO replacement policy. As-
sume the L1 data cache is still 32 KiB 4-way set-associative and the L2 is inclusive of the L1 cache.

When you execute Loops A and B, how many cache misses occur at the L2?

(e) Based on extensive profiling and performance analysis, you measure that the L1 hit time is 4 cycles,
the L2 hit time is 12 cycles, and main memory (DRAM) access time is 50 cycles. What is the average
memory access time (AMAT) while executing Loop A and B? You can leave your answer in the form
of an expression.

(Hint: what are the miss rates at each level of memory hierarchy when executing the loops?)
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2. Memory Cache Coherency [12 pts]

We are given a multi-core system where each core has its own private cache, and the caches snoop each other
and communicate with main memory over a shared memory bus as shown below. Consider the baseline
snoopy cache-coherence protocol discussed in Handout 7 and in Problem Set 5.

Recall that it implements the MOESI protocol with five possible cache states.

Invalid (I): Block is not present in the cache.

Clean exclusive (CE): The cached data is consistent with memory, and no other cache has it.

Owned exclusive (OE): The cached data is different from memory, and no other cache has it. This cache
is responsible for supplying this data instead of memory when other caches request copies of this data.

Clean shared (CS): The data has not been modified by the corresponding CPU since cached. Multiple
CS copies and at most one OS copy of the same data could exist.

Owned shared (OS): The data is different from memory. Other CS copies of the same data could exist.
This cache is responsible for supplying this data instead of memory when other caches request copies
of this data.

The following memory bus transactions were supported by the protocol.

Coherent Read (CR): issued by a cache on a read miss to load a cache line.

Coherent Read and Invalidate (CRI): issued by a cache on a write-allocate after a write miss.

Coherent Invalidate (CI): issued by a cache on a write hit to a block that is in one of the shared states.

Block Write (WR): issued by a cache on the write-back of a cache block.

Coherent Write and Invalidate (CWI): issued by an I/O processor (DMA) on a block write (a full
block at a time).

Cache to Cache Intervention (CCI): used by a cache to satisfy other caches’ read transactions when
appropriate. A CCI intervenes and overrides the answers normally supplied by memory. Data should
be supplied using CCI whenever possible for faster response relative to the memory.
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(a) Consider the case where each of the private caches are write-back, write-allocate. Assume that all
caches are initially empty and that words A and B are in the same cache line.

Complete the following table that shows a sequence of memory events that occur.
For each event, determine:

� which caches send out what messages on the bus

� the subsequent states of each of the caches after the event.

� whether main memory will have the most up-to-date value of the cache block after the event.

ID Event
Message
Shared

Cache0
State

Cache1
State

Cache2
State

Main Memory
Up-to-Date?

0 CPU0: read A 0:CR CE I I Yes

1 CPU2: write B

2 CPU1: read B

3 CPU1: write B

4 CPU2: write A

5 CPU0: write B

(b) Which of the events in the table correspond to false sharing misses? Answer in terms of the event IDs.
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3. Out-of-Order [22 pts]

Consider the loop below, performing a saturating vector sum; result, X[i], and MAX are all of type int32.

for (int i = 0; i < N; i++) {

result += X[i];

if (result > MAX)

result = MAX;

}

}

In assembly, the loop is as follow:

# x1 is a pointer to the beginning of "X"

# x2 is a pointer to the end of "X"

# x3 has "MAX"

# Return "result" in x4

beq x1, x2, end

loop: ld x5, 0(x1) # x5 has "X[i]"

add x4, x4, x5

blt x4, x3, skip_sat

mv x4, x3 # Equivalent to "addi x4, x3, 0"

skip_sat: addi x1, x1, 4

bne x1, x2, loop

end:

(a) Register Renaming [14 pts]

Now, suppose we run one iteration of this loop on an out-of-order, superscalar core with the following
characteristics:

� Up to two instructions can be fetched, decoded, dispatched, issued, written-back, and committed
every cycle.

� The ROB has 4 entries.

� There are 32 physical registers.

� There is one fully-pipelined load/store unit.

� There is one fully-pipelined ALU. The ALU also executes branches.

� Adds and branches take 1 cycle to execute.

� Loads and stores take 3 cycles to execute.

� All instructions must spend one cycle in the write-back stage before their result can be used by a
dependent instruction.

� An ROB entry becomes available one cycle after the instruction it is holding commits.

� The scheduler always selects the oldest ready instructions to issue.
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� The CPU can execute all instructions speculatively in case of a branch.

Below is the register rename table at the beginning of execution:

Architectural Register Physical Register
x1 P1
x2 P2
x3 P3
x4 P4
x5 P5

The free list is a FIFO with the initial state below. The leftmost element is the head of the free list,
and the rightmost element is the tail.

P7 P11 P9 P14 P10 P18 P20

For this section, assume that the CPU correctly predicts all branches (as well as branch targets).

In the table below, fill in the cycle number for when each instruction enters the ROB, issues, writes-
back, and commits. Also, fill in the new register names for each instruction, where applicable. Use only
physical register names for the src entries.

Assume that the ROB is initially empty. Part of the table has been filled in for you.

Time
OP Dest Src1 Src2

Enter ROB Issue WB Commit

0 1 4 5 ld x5, 0(x1)

add x4, x4, x5

blt x4, x3, skip sat

mv x4, x3

addi x1, x1, #4

bne x1, x2, loop

Also, fill in the values in the free list when the last instruction in the table above commits:
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(b) Short Answers [8 pts]

i. Suppose that the blt x4, x3, skip sat instruction in part 3a was mispredicted. After the fol-
lowing instructions were flushed, what would be the state of the free list?

ii. Which of the following optimizations might improve the performance of this single iteration of the
loop shown above? Assume that N is very large and branch prediction is perfect. Check off all that
apply.

◻ Adding more load-store units, but otherwise keeping the CPU unchanged.

◻ Adding more ALUs, but otherwise keeping the CPU unchanged.

◻ Adding more ROB entries, but otherwise keeping the CPU unchanged.

iii. Data-in-ROB designs store the actual values of their source and destination registers in the ROB
itself. But this leads to expensive data duplication.
One tempting optimization would be to store only tags for the source registers, where these tags
can point to the architectural register file or to other rows in the ROB.
Would this optimization result in correct behavior? Explain your answer.

iv. A mispredicted branch can greatly reduce the performance of a loop! To reduce that penalty, an
engineer in your team suggests that you replace these two instructions:

blt x4, x3, skip_sat

mv x4, x3

with the single instruction below, which does the same thing:

min x4, x4, x3 # x4 < x3 ? x4 : x3

What conditions would the compiler need to check for to correctly perform this replacement?
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4. VLIW [9 pts]

(a) Software Pipelining [8 pts] Consider the loop below, performing a saturating vector sum; result,
X[i], and MAX are all 32-bit floats.

for (int i = 0; i < N; i++) {

result += X[i];

result = min(result, MAX);

}

In assembly the loop is as follow:

# x1 is a pointer to the beginning of "X"

# x2 is a pointer to the end of "X"

# f0 has "MAX"

# We return "result" in f1

loop: fld f2, 0(x1) # f2 has "X[i]"

fadd f3, f1, f2

fmin f1, f3, f0

addi x1, x1, #4

bgtz x1, x2, loop

end:

Suppose that we run this loop on a VLIW architecture with the following fully-pipelined functional
units:

� One integer ALU unit which also perform branches; 1 cycle delay.

� One FPU which performs ”fadd” and ”fmin”; 2 cycle delay.

� One load/store unit; 3 cycle delay.

Instructions are statically scheduled with no interlocks; all latencies are exposed in the ISA. All register
operands are read before any writes from the same instruction take effect (i.e., no WAR hazards between
operations within a single VLIW instruction).

Schedule the loop using software pipelining (but without unrolling the loop) in the table below. You
can just write the opcode and destination register of the instructions in the table.

Minimize the number of cycles taken. You can re-order instructions.
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label ALU FPU MEM

(b) Short Answer [1 pt] Does trace-scheduling become more useful, or less useful, as your static branch
prediction accuracy increases? Check off the correct answer.

◻ More useful

◻ Less useful
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5. Multithreading [8 pts]

(a) Thread Scheduling [6 pts]

Consider the loop below, performing a saturating addition of two vectors; Y[i], X[i], and MAX are all
of type int32.

for (int i = 0; i < N; i++) {

Y[i] += X[i];

if (Y[i] > MAX)

Y[i] = MAX;

}

}

In assembly, the loop is as follow:

# x1 is a pointer to the beginning of "X"

# x2 is a pointer to the beginning of "Y"

# x3 is "MAX"

# x4 is "i"

loop: ld x5, 0(x1) # x5 has "X[i]"

ld x6, 0(x2) # x6 has "Y[i]"

addi x1, x1, 4 # increment X pointer

addi x2, x2, 4 # increment Y pointer

addi x4, x4, -1 # decrement "i"

add x7, x5, x6

blt x7, x3, skip_sat

mv x7, x3

skip_sat: sw x7, 0(x2)

bnez x4, loop

end:

Suppose that we run this loop on a multi-threaded 5-stage classic RISC processor where:

� Loads and stores have a latency of 20 cycles

� Taken branches have a latency of two cycles

� All other instructions (including non-taken branches) have a latency of one cycle

� There is perfect branch prediction

Do not reorder the instructions in the loop.
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i. How many threads are needed to guarantee that we will never stall with fixed round-robin schedul-
ing?

ii. Suppose that we instead use a coarse-grained thread scheduling policy, which switches threads
whenever a stall would occur due to a RAW hazard or due to a taken branch. (WAR and WAW
hazards do not cause stalls).
How many threads are needed to guarantee that would never stall with this scheduling policy?
Consider only the steady-state execution.

(b) Short Questions [2 pts]

Suppose that we have two machines, A and B. They are both used to run a wide variety of multithreaded
workloads.

A has one CPU. The CPU is an OoO 8-wide superscalar with SMT. Two threads can run simultaneously
on the CPU.

B has two CPUs. Each CPU is an OoO 4-wide superscalar without multithreading.

Check off the correct answers below:

i. A would be expected to have:

◻ the same clock cycle time as B?

◻ a lower clock cycle time than B?

◻ a higher clock cycle time than B?

ii. A would be expected to have:

◻ the same CPI as B?

◻ a lower CPI than B?

◻ a higher CPI than B?
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6. Vector Processors [16 pts]

(a) Vector Chaining [10 pts]

Consider the loop below, performing a saturating addition of two vectors; Y[i], X[i], Z[i], and MAX

are all of type double.

for (int i = 0; i < N; i++) {

X[i] = Y[i] + Z[i];

X[i] = min(X[i], MAX);

}

In vectorized assembly, the loop is as follow:

# x1 is a pointer to the beginning of "X"

# x2 is a pointer to the beginning of "Y"

# x3 is a pointer to the beginning of "Z"

# x4 is "N"

# f0 is "MAX"

loop: vsetvli x5, x4, e64 # x5 is the vector length

vle.v v0, 0(x1) # ld "Y"

vle.v v1, 0(x2) # ld "Z"

vfadd.vv v2, v0, v1 # add Y and Z

vfmin.vv v3, v2, f0 # min(X, MAX)

vse.v v3, 0(x2) # st "X"

sub x4, x4, x5

slli x5, x5, 3

add x1, x1, x5

add x2, x2, x5

add x3, x3, x5

bnez x4, loop

Suppose we run this loop on a vector machine with the following characteristics:

� 8 elements per vector register

� 4 vector lanes

� 1 load-store unit per lane, 3-cycle latency

� 1 FPU per lane, 2-cycle latency

– This performs both additions and vfmin operations

� All functional units are fully pipelined

� All functional units have dedicated read/write ports into the vector register file

� No dead time

� Vector instructions execute in order

� Scalar instructions execute separately on a decoupled scalar processor

We will compare the performance of the vector processor with and without chaining. Vector chaining is
performed through the vector register file. An element can be read on the same cycle that it is written
back, or it can be read on any later cycle—the chaining is flexible.
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However, with no chaining, a dependent vector instruction must stall until the previous vector instruc-
tion finishes writing back all elements. As an example, the pipeline timing would proceed as follows for
two dependent vadd instructions if not using chaining:

Instruction 1 2 3 4 5 6 7

vfadd v2, v0, v1 R X1 X2 W

R X1 X2 W

vfadd v4, v2, v3 R W

Complete the following table for one stripmine iteration, which shows the cycle numbers at which
each vector instruction begins execution (starting from the vector register read). The first column
corresponds to the baseline vector design with no chaining. The second column adds flexible chaining
to the processor. Assume that vl is set to the maximum vector length, and the first vector instruction
executes in cycle 1. Ignore scalar instructions.

Instruction
Cycle Number

without chaining with chaining

vle.v v0, 0(x1) 1 1

vle.v v1, 0(x2)

vfadd.vv v2, v0, v1

vfmin.vv v3, v2, f0

vse.v v3, 0(x2)

(b) Short Questions [4 pts]

i. Suppose we are running a program with extremely long vector lengths. Why might we want to
have fewer vector lanes than the vector register length? Assume that cycle time is not affected by
the number of lanes, and that hardware complexity costs are not a concern.

ii. Why are precise exceptions difficult to support with vector processors?
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7. Memory Consistency and Synchronization [13 pts]

Consider the following code for implementing producer–consumer communication using FIFOs on a pair of
cores in a shared memory system. One core is the producer, and the other core is the consumer. The cores
support a weak memory model. Assume that the FIFOs can be infinitely long.

# Producer

# x1 has the address of the tail pointer

# x2 has the data we are appending to the FIFO

lw x3, 0(x1) # Load the tail pointer

sw x2, 0(x3) # Append new data to the tail

addi x3, x3, 1

sw x3, 0(x1) # Store the new tail pointer

##########################

# Consumer

# x1 has the address of the head pointer

# x2 has the address of the tail pointer

lw x3, 0(x1) # Load the head pointer

spin: lw x4, 0(x2) # Load the tail pointer

beq x3, x4, spin # Spin if FIFO is empty

lw x5, 0(x3) # Load data from FIFO

addi x3, x3, 1

sw x3, (x1) # Store new tail pointer

# then process x5

(a) Briefly explain what could go wrong that would prevent the communication from happening correctly.

(b) What changes (additions, deletions, rearrangments) could you make to fix the code to guarantee correct
behavior? (Modify the above code to demonstration your approach.)

15



Student ID number:

Now assume that we have multiple consumers.

(c) Briefly explain what could go wrong that would prevent the communication from happening correctly
with multiple consumers.

(d) Describe in a detailed way how you would modify the code to guarantee correct behavior with multiple
consumers, using an atomic compare-and-swap instruction. You do not have to show exact code.
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8. Warehouse Scale Computing (WSC) [10 pts]

(a) Suppose you run a WCS and one of your workloads has 1000 threads and you run those threads on
1000 seperate servers. You measure the reliability of this computation as 0.99. Assume the reliability
is the probably of sucessful completion, i.e. no fault occurs during execution.

You would like to improve the reliability by using more servers and decide to redundantly run each
thread on two seperate servers. Assuming all faults are i.i.d. (independent and identically distributed),
what would be the new reliability?

Without a calculator, it is difficult to reduce this to a single number, so leave your answer in the form
of an expression. Explain your work.

Hint: Think about the reliability of a single server that would lead to the reliability for the entire
collection of threads, and then how doubling up the thread execution effects the reliability of each thread.

(b) Your California WSC has a total of 1000 servers along with a collection of switches and other IT
equipment such as load balancers. A server requires 100 Watts. Assume that besides the servers all
other IT equipment has insignificant power draw.

Your average Power Utilization Efficiency (PUE) = Total facilty power / IT equipment power = 1.1.

Pacific Gas and Electric charges you $0.1 per Kilowatt-hour.

In expression form, how much does it cost per week to run your WSC (assuming all equipment runs 24
hours per day and 7 days per week)?

(c) Suppose you have a large physics simulation, such as solving a system of partial differential equations
(PDEs). You would normally run such problems on a supercomputer, but are considering running it
on a WSC. What are the factors that might limit performance?
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9. FPGAs [6 pts]

Suppose you are the VP of Engineering at a electric scooter company and you need to decide which imple-
mentation technology to use for your on-board controller chip for the scooter. You’ve done the logic/gate
level design and now are deciding between designing an ASIC or using an off-the-shelf FPGA. The appropri-
ate FPGA parts are available for $10 each. The same function on an ASIC will cost you $1 per chip, however
designing the ASIC will incur significant up-front engineering costs (NREs). For the lifetime of this product
you expect to build and sell 100K units. From experience you know that you can map your design to an
FPGA for $100,000. What would be the most that you could spend on ASIC NREs to justify designing an
ASIC? Show your work.

Besides this cost analysis, what other factors might come into your decision?
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