
CS 152/252A
Spring 2023 Computer Architecture Final

• You have 170 minutes unless you have DSP accommodations. Exam questions are roughly in the order they were covered
in lecture. If a question is used for a clobber, it’s labeled either (MT1) or (MT2) depending on the exam it clobbers.

• You must write your student ID on the bottom-left of every page of the exam (except this first one). You risk losing credit
for any page you don’t write your student ID on.

• For questions with length limits, do not use semicolons or dashes to lengthen your explanation.

• The exam is closed book, no calculator, and closed notes, other than three double-sided cheat sheet that you may reference.

• For multiple choice questions,
□ means mark all options that apply
means mark a single choice

First name

Last name

SID

Exam Room

Name and SID of person to the right

Name and SID of person to the left

Discussion TAs (or None)

While the statement of the Honor Code itself is brief, it is an affirmation of our highest ideals as Golden Bears.

Honor code: “As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.”

By signing below, I affirm that all work on this exam is my own work, and honestly reflects my own understanding of the
course material. I have not referenced any outside materials (other than one double-sided cheat sheet), nor collaborated
with any other human being on this exam. I understand that if the exam proctor catches me cheating on the exam, that I
may face the penalty of an automatic "F" grade in this class and a referral to the Center for Student Conduct.

Signature:

1

THIS PAGE IS INTENTIONALLY LEFT BLANK

2

Q1. [20 pts] Iron Law & Pipelining (MT 1)
For questions (a) to (d), determine whether each given statement is true. If false, point out and replace the incorrect part.

Example: Lowering CPU clock frequency will (1) decrease (2) seconds-per-cycle because (3) each clock cycle now takes longer.

Answer: The statement is false because part (1) is wrong.
Replace with: increase

(a) [3 pts] Adding a branch delay slot might (1) increase (2) instructions-per-program because (3) the branch predictor might
not be accurate.

Which option best describes the statement above?

The statement is true.
The statement is false because part (1) is wrong.
The statement is false because part (2) is wrong.
The statement is false because part (3) is wrong.

If the statement is false, replace the incorrect part (under 1 sentence) so that the statement becomes true:

(b) [3 pts] In a classic 5-stage pipeline, supporting precise exceptions might (1) increase (2) cycles-per-instruction due
to (3) added logic complexity.

Which option best describes the statement above?

The statement is true.
The statement is false because part (1) is wrong.
The statement is false because part (2) is wrong.
The statement is false because part (3) is wrong.

If the statement is false, replace the incorrect part (under 1 sentence) so that the statement becomes true:

SID: ________________________ 3

(c) [3 pts] Moving from a single-threaded core to SMT-enabled core might (1) increase (2) time-per-cycle due
to (3) duplicated microarchitecture structures (PC, ArchRF, . . .) and scheduling logic.

Which option best describes the statement above?

The statement is true.
The statement is false because part (1) is wrong.
The statement is false because part (2) is wrong.
The statement is false because part (3) is wrong.

If the statement is false, replace the incorrect part (under 1 sentence) so that the statement becomes true:

(d) [3 pts] Stripmining on a vector processor might (1) increase (2) instructions-per-program due to (3) handling cases where
the iteration count is not divisible by the vector length.

Which option best describes the statement above?

The statement is true.
The statement is false because part (1) is wrong.
The statement is false because part (2) is wrong.
The statement is false because part (3) is wrong.

If the statement is false, replace the incorrect part (under 1 sentence) so that the statement becomes true:

(e) [4 pts] A 5-stage pipeline that has a 1-cycle ALU and a multi-cycle unpipelined FPU has WAW and structural hazards.
We would like to pipeline the FPU to potentially help with these issues.

(i) [2 pts] Does pipelining the FPU help with WAW hazards? # Yes # No
(ii) [2 pts] Does pipelining the FPU help with structural hazards? # Yes # No

(f) [4 pts] Assume an out-of-order core is executing a store instruction before a load instruction to different addresses (i.e.
instruction 0 = store to address A, instruction 1 = load to address B). For this particular core, the core designer allows for
the load to complete before the store (the load is reordered before the store) if the store takes longer than the load to issue
or execute. By completing before the store, the load is allowed to bring its data into the cache, potentially evicting older
data. Note that the load can only complete, i.e the register for the load will not be modified until it commits.
Assume the older store throws an exception after the younger load completes. Is this behavior still valid for precise
exceptions?
Yes # No

SID: ________________________ 4

Q2. [20 pts] Microcode Grab Bag (MT 1)
The questions in this section may be answered independently of one another.

It may be helpful to refer to Appendix A on microcoding while answering this question.

(a) [4 pts] The developer before you had tried to implement an instruction in microcode. However, since they didn’t take
CS 152/252A, their implementation might have a bug! They’ve left you the instruction and pseudocode, as well as their
potentially buggy microcode.
Instruction:

BUGGY rd, rs1, rs2

Pseudocode:

if (R[rs1] != 0) {
R[rd] = R[rd] + M[R[rs2]];

}

Microcode implementation:

(i) [2 pts] If there is an incorrect line of microcode in the above implementation, what line contains an error? If no lines
contain errors, please mark "None of the above".

Line 1
Line 2
Line 3
Line 4
Line 5
None of the above

(ii) [2 pts] Why is the line you marked above incorrect? You may write at most 2 sentences of explanation.
Note: if you marked "None of the above" for the previous subpart, leave this part blank.

SID: ________________________ 5

(b) [16 pts] Reverse Engineering Microcode
The aforementioned developer was, unfortunately, also a firm believer in self-documenting code and chose not to explain
what some of the microcoded instructions do! In this part, we consider an implementation of the microcoded instruction
mystery. The microcode for this instruction can be found on page 7 of your exam booklet.

(i) [9 pts] Analyze the encoded control signals for the mystery instruction and complete the pseudocode in the space
provided in the table on page 7. If a row encodes multiple pseudo-operations, write both operations in the same
pseudocode box. Unless the pseudocode for a row is already provided, you need to fill out the pseudocode for every
row with microcode signals in the table.

(ii) [3 pts] In one sentence (or less), name or describe the high-level operation that this instruction implements.
No credit will be given for simply translating the pseudocode to English.

(iii) [2 pts] What is/are the input register(s) of the mystery instruction?

□ rs1
□ rs2
□ rd
□ A
□ B

(iv) [2 pts] What is/are the output register(s) of the mystery instruction?

□ rs1
□ rs2
□ rd
□ A
□ B

SID: ________________________ 6

M
ic
ro
co
de

Im
pl
em

en
ta
tio

n
of

th
e
M
Y
ST

E
R
Y
In
st
ru
ct
io
n

S
ta
te

P
se
ud
oc
od
e

IR Ld
R
eg S
el

R
eg W
r

R
eg E
n

A Ld
B Ld

A
LU

O
p

A
LU E
n

M
A Ld

M
em W
r

M
em E
n

Im
m

S
el

Im
m

E
n

μB
r

N
ex
tS

ta
te

FE
TC

H
0:

M
A
←

P
C
;

A
←

P
C

*
P
C

0
1

1
*

*
0

1
0

0
*

0
N

*

IR
←

M
em

1
*

0
0

0
*

*
0

0
0

1
*

0
S

*

P
C
←

A
+4

0
P
C

1
0

0
*

IN
C
_A

_4
1

*
0

0
*

0
D

*

..
.

N
O
P
0:

m
ic
ro
br
an
ch

ba
ck

to
FE

TC
H
0

*
*

0
0

*
*

*
0

*
0

0
*

0
J

FE
TC

H
0

M
Y
S
TE

R
Y:

0
*

0
0

0
1

C
O
P
Y
_A

1
*

0
0

*
0

N
*

0
R
d

1
0

*
*

S
U
B

1
*

0
0

*
0

N
*

0
R
s1

0
1

1
*

*
0

*
0

0
*

0
N

*

A
G
A
IN
:

0
*

0
0

0
*

C
O
P
Y
_A

1
1

0
0

*
0

N
*

0
*

0
0

0
1

*
0

0
0

1
*

0
S

*

0
*

0
0

0
0

C
O
P
Y
_B

0
*

0
0

*
0

E
Z

FE
TC

H
0

0
*

0
0

1
0

IN
C
_A

1
*

0
0

*
0

N
*

0
R
d

0
1

0
1

*
0

*
0

0
*

0
N

*

0
R
d

1
0

0
*

IN
C
_B

1
*

0
0

*
0

J
A
G
A
IN

SID: ________________________ 7

Q3. [12 pts] Caches (MT 1)
Way prediction is an optimization technique used in set-associative caches. The principle is that we predict which cache way is
most likely going to be accessed for a particular memory request. If our prediction is correct, there is no need to check the other
ways in the cache. If it is incorrect, we proceed as though with a normal set associative access.

(a) First, consider a two way set associative cache which is designed with either way-prediction (one data way is read at a
time) or concurrent data access (both data ways are read at the same time).

(i) [2 pts] True or False: In all circumstances, conventional concurrent data access caches have an AMAT less than or
equal to that of way-predicted cache. # True # False
In no more than 2 sentences, justify your answer:

(ii) [2 pts] True or False: A concurrent data access cache will consume equal or more power than a way predicted cache
in all circumstances. # True # False
In no more than 2 sentences, justify your answer:

Figure 1: General 2-Way Set Associative Cache

(b) (i) [2 pts] Consider a 16 kB two-way set associative cache without way prediction. Given a hit time of 5 cycles, a hit
rate of 80%, and an L2 access time of 30 cycles, what is the AMAT of this cache?

SID: ________________________ 8

(ii) [2 pts] Consider an 8kB direct mapped cache. Given a hit time of 2 cycles, a hit rate of 60%, and an L2 access time
of 30 cycles, what is the AMAT of this cache?

(iii) [1 pt] Now consider a 16 kB two-way set associative cache with way prediction. What is the hit rate of this cache?
60%
70%
80%
None of the above

(iv) [3 pts] What is the AMAT of this cache?

(v) [1 pt] In the case of a data cache, which of the following is the preferred input to the way-predictor (reduces latency
to cache access)?

The data address
PC

(vi) [2 pts] Justify your answer to the previous part.

SID: ________________________ 9

Q4. [18 pts] Virtual Memory (MT 1)
Recall from discussion that superpages are memory pages of large sizes. Most general purpose processors support superpages
because of many benefits they can bring to the table. Processes can specify if they would like to allocate superpages or "regular
pages" for their workload. This question will explore superpaging in more detail.

As a quick refresher, here is a diagram showing how superpages are translated in a system with two-level page tables, where the
Page Table Entry in the L1 table points to a superpage.

L1 Index [23:18] L2 Index [17:12] Offset [11:0]

PPN [23:18] Offset [17:0]

Virtual Address

Physical Address

PTE

L1 Table

(a) VM Concept Blitz
(i) [2 pts] Let’s recap some virtual memory concepts. Select all that are true.

□ Systems with virtual memory can give the illusion of more memory than is physically available.
□ Paging provides a layer of security.
□ All modern systems must have virtual memory.
□ Virtual memory is expensive from a hardware and runtime perspective.
None of the above

(ii) [2 pts] Let’s consider some superpaging concepts. Select all that are true.
□ Superpaging reduces hardware complexity.
□ A system that supports superpaging is less prone to external fragmentation.
□ With superpaging, TLB memory scope increases.
□ With superpaging, disk traffic can increase.
None of the above

SID: ________________________ 10

(b) [10 pts] Super Translation
Consider a system that uses 32-bit words, 10-bit virtual addresses, 16-byte pages, and three-level page tables. This
system supports superpages. The system memory has a latency of 90 ns. A secondary storage (disk) is attached to the
system. The disk has a latency of 2.5 ms and a speed of 0.1 byte/ns.
In addition to contents, each PTE contains 1 bit indicating whether the pointed page is on disk, and 1 bit indicating if that
page is a superpage. If a page is on disk, it needs to be transferred into memory before its content can be read. Note that
here we have simplified the page fault handling process.
Below are the virtual addresses of two memory accesses, the content of the Page Table Base Register, and a table showing
the contents of a portion of physical memory used for page tables. Recall that the content of a PTE stores the page number
of the next-level page table.

Addr Contents Superpage? On Disk?
0x00 0x04 0 0
0x04 0x06 0 1
0x08
0x0C 0x20 1 0
0x10
0x14
0x18 0xA1 0 1
0x1C
0x20
0x24 0x15 0 1
0x28 0x0A 0 1
0x2C 0x78 0 0
0x30 0x05 0 0
0x34
0x38
0x3C 0x90 1 1
0x40
0x44
0x48 0x12 1 1
0x4C 0x01
0x50 0x09 1 0
0x54
0x58
0x5C 0x02 0 1

Access Order Virtual Address
1 0x0FA
2 0x349

Page Table Base Register
0x30

(i) [4 pts] What is the physical address of the first memory access?

(ii) [4 pts] What is the physical address of the second memory access?

(iii) [2 pts] Which of the two memory accesses has a lower latency? Here, latency is defined as the time between when
an access begins the translation process and when the target byte is retrieved from memory. Assume that no other
latency is involved except the ones mentioned above.
Hint: disk access time = latency + size-of-transfer / rate-of-transfer
First memory access # Second memory access

SID: ________________________ 11

(c) Superpage Scenarios
In the following scenarios, which paging mechanism would be better and why?

(i) [2 pts] Context switching among many apps that have a working set of 1 MB on a system with 4 MB pages and 16
MB superpages.
Superpaging # Regular Paging # Neither is better than the other

In no more than 2 sentences, justify your answer:

(ii) [2 pts] Training a machine learning model with a massive dataset (4 GB) – requiring multiple iterations through the
data – on a system with 4 MB pages and 16 MB superpages.
Superpaging # Regular Paging # Neither is better than the other

In no more than 2 sentences, justify your answer:

SID: ________________________ 12

Q5. [20 pts] Out-of-Order Pipelines (MT 2)
(a) [8 pts] Avenue (Issue) Q

In this part, you are working on the design of an out-of-order processor which has separate functional units for integer
operations, floating point, and memory. Each functional unit has its own issue queue (also referred to as a reservation
station or issue buffer) from which it is able to issue dispatched instructions.

(i) [1 pt] A coworker suggests that it is a good idea to use a large ROB (>200 entries) and size the issue queue of each
individual functional unit such that it is the size of the ROB. When considering power, performance, and area trade
offs, is your coworker’s suggestion a good one?
Yes # No

(ii) [3 pts] In no more than two sentences, justify your answer:

(iii) [1 pt] Another coworker suggests that the ROB should have more entries than the total sum of all issue queue entries
across all functional units. When considering power, performance, and area trade offs, is your coworker’s suggestion
a good one? You may ignore considerations around scaling the physical register file and free list.
Yes # No

(iv) [3 pts] In no more than two sentences, justify your answer:

SID: ________________________ 13

(b) [12 pts] They see me rollin’, they hatin’
In the tables below, update the ROB, rename table, and freelist to reflect the state of the processor after executing the given
program and completing any necessary rollbacks using a multi-cycle unwind procedure. Assume that all instructions
which can be committed are committed before any rollback operations begin. Additionally, assume that the pagefault
exception is detected after the sub instruction has already begun executing and that the branch mispredict is resolved at
some point after the pagefault exception.

• The free list operates as a FIFO queue; entries are popped from the left and freed entries are pushed on the right.
• When removing an item from the freelist, do not cross out entries; instead, mark an “X” in the row immediately

below.
• If an instruction does not write to the register file, mark an “X” in the ROB.
• When completing the rename table, do not cross out entries. Instead, write the new physical register in the next box

to the right. You may not need to use all spaces.

The first instruction has been completed in the tables for you. All three of the tables below will be graded.

PC Instruction
00 addi x2, x2, #1
04 ld x2, 0(x2)
08 beq x2, x0, label ; mispredicted as not taken, resolved very late
0c mul x3, x2, x2
10 st x3, 0(x2) ; pagefault exception, detected early
14 sub x2, x2, x2

...
ff label: /* ommitted */

ROB
Operation Rd Previous Rd Committed Rolledback?
0 addi p8 p0 Y N
1 ld
2 beq
3 mul
4 st
5 sub

Freelist
p8 p2 p9 p6

X

Rename Table
Arch. Register Physical Register

x2 p0 p8

x3 p5

(i) [1 pt] After completing rollback, should an exception be raised?
Yes # No

(ii) [1 pt] After completing rollback, at what PC should execution continue at? Write exception if execution should
continue at the exception handler.

SID: ________________________ 14

Q6. [10 pts] Multithreading (MT2)
(a) Match each of advantages and disadvantages to the most appropriate type of multi-threading. Each advantage/disadvan-

tage should only be used once, so use it for the type of multithreading it best applies to. Keep scratch work away from
the multiple choice options for each question.

1. Not possible on a single-issue processor.
2. Can, but not necessarily effective at, hiding the throughput losses from both long and very short stalls.
3. Useful only for reducing the penalty of very high-cost stalls, where pipeline refill is negligible compared to the stall

time.
4. Most effective at minimizing both horizontal and vertical waste.
5. In general, slows down execution of an individual thread, even a thread that is ready to execute and doesn’t have

stalls.
6. Doesn’t need thread switching to be extremely low overhead.

(i) [2 pts] Coarse-grained multithreading:
Advantage:
1 # 2 # 3 # 4 # 5 # 6

Disadvantage:
1 # 2 # 3 # 4 # 5 # 6

(ii) [2 pts] Fine-grained multithreading:
Advantage:
1 # 2 # 3 # 4 # 5 # 6

Disadvantage:
1 # 2 # 3 # 4 # 5 # 6

(iii) [2 pts] Simultaneous multithreading:
Advantage:
1 # 2 # 3 # 4 # 5 # 6
Disadvantage:
1 # 2 # 3 # 4 # 5 # 6

(b) [4 pts] Suppose we have a superscalar out-of-order CPU and want to add support for simultaneous multithreading to it.
Which of the following CPU components need to be duplicated to maintain program correctness?

□ Program Counter (PC) register
□ Physical registers
□ Functional units
□ Functional unit issue queues
□ Data memory ports
□ Architectural Register file
□ Branch predictor
None of the above

SID: ________________________ 15

Q7. [20 pts] Vectorizing Data Processing (MT2)
(a) In data processing, one of the most basic types of processing is summing a column of a table (otherwise known as a

reduction) to a single overall value. Here is the psuedocode for an iterative sum reduction of a table’s column:

Assumptions:
- ‘table’ is a 2D array of type table[row][col] and has
‘numRows’ rows and ‘numCols‘ columns
- ‘table’ is stored in column-major order
(all column values are stored contiguously in memory)
- ‘col‘ < ‘numCols‘ (within the bounds of the array)

int sum_col(int table[][], int col, int numRows):
int sum = 0;
for (int i = 0; i < numRows; ++i):

sum += table[i][col];

We would like to convert the code to a vectorized implementation for a substantial performance speedup. You initially
describe the following pseudocode for the vector implementation:

1. Set a scalar register sum to 0

2. Run a stripmine loop (each iteration does a vector length (VL) element partial sum)
(a) Naively load VL contiguous elements of column col into a vector register
(b) Sum the entire vector register and add partial sum to overall scalar register sum
(c) If more rows exist, loop back to (a) while also modifying next VL to be max(VL, number of rows left)

3. Return the overall scalar register sum

(i) [2+2 pts] If the table given was stored in row-major order (i.e. row values are stored in contiguous memory locations),
would the prior vector implementation break?
Yes # No

Explain in at most two sentences.

(ii) [2+2 pts] The sum operation in the vector implementation is done iteratively (partial sums are iteratively added in
the stripmine loop to the overall scalar sum). Is it possible to also vectorize these sums?
Yes # No

Explain in at most three sentences.

SID: ________________________ 16

(b) While getting the sum of column values is great, sometimes data processing requires sorting the output values and returning
a new table. For the sake of simplicity, ignore the table from the previous parts. Instead we would like to sort a single
array in a vectorized way. To do this, we can use a vectorized version of the quicksort algorithm, which recursively sorts
an array by partitioning it (splitting it into 2 arrays) based on a chosen pivot element. This algorithm is known to be fast
if the partitioning step in quicksort can be vectorized. The iterative pseudocode for this partitioning operation is given
below assuming that the partition is done for an array that fits within a vector register completely:

1. set ‘pivotValue’ to a random element
2. move all values < ‘pivotValue’ one-by-one to left side of the array
3. move all values >= ‘pivotValue’ one-by-one to right side of the array

To help with this you are given new instruction called vcompress that allows elements selected by a vector mask register
from a source vector register to be packed into contiguous elements at the start of a destination vector register.

Example use of ‘vcompress’ instruction

8 7 6 5 4 3 2 1 0 Element number

1 1 0 1 0 0 1 0 1 v0 = mask reg.
8 7 6 5 4 3 2 1 0 v1 = source reg.
1 2 3 4 5 6 7 8 9 v2 = dest. reg.

<--- execute vcompress v2, v1, v0 <---

0 0 0 0 8 7 5 2 0 v2 *after* vcompress

(i) [1+1+1+1 pts] You are given the following pseudocode that uses this new vcompress instruction to implement the
partitioning step in a vectorized/optimized way. Fill in the blanks with phrases.

1. Make a mask based on if elements are the pivotValue.
2. Use vcompress with that mask to move elements into the vector register.
3. Store the ‘compressed’ destination vector to memory.

4. the mask.

5. Repeat step(s) .

6. Store values to memory .
7. Load contiguous vector length memory back into the vector register.

(ii) [3 pts] If the partitioning step also required you to return the index of the pivotValue in the final vector register,
how could you use the mask register given to the vcompress to determine the index?

(1) Sum all 1’s in mask and use sum as index
(2) Use highest index of 1 as index
Use either (1) or (2)
You can’t use the mask to determine the index

SID: ________________________ 17

(iii) [2+3 pts] Assuming the vcompress instruction doesn’t exist, with strictly vector instructions (i.e. no iterative
scalar loops), what single type of vector instruction not used in the pseudocode might allow you to implement this
functionality?

Why? Explain in at most three sentences.

SID: ________________________ 18

Q8. [24 pts] Cache Coherence
(a) [9 pts] MOESI: Must Observe, Every State Identified!

Important assumptions for this question:

1. 𝐴 is a processor with a private cache. So is 𝐵, and so is 𝐶 .
2. All private caches follow the MOESI protocol, and can snoop on other caches using a shared bus.
3. The MOESI protocol referred to in this part can be viewed in the below diagram that contains the possible MOESI

state transitions.

SID: ________________________ 19

For each of the following subparts, please select the initial and next cache states to represent the transition which the given
description best describes.
Here are what the options refer to: M (Modified), O (Owned), E (Exclusive), S (Shared), I (Invalid).
Important: Consider each subpart independently of the others. Assume location 𝑋 is initially neither in 𝐴’s nor 𝐵’s
cache, at the start of each subpart.

(i) [2 pts] Both 𝐴 and 𝐵 have read from location 𝑋. At this point, 𝐴’s cache is in state StateA1, and 𝐵’s cache is in
state StateB1. Now, 𝐴 writes to location 𝑋. At this point, 𝐴’s cache is in state StateA2, and 𝐵’s cache is in state
StateB2.
𝐴’s cache transitions from StateA1 to StateA2.
StateA1: # M # O # E # S # I
StateA2: # M # O # E # S # I
𝐵’s cache transitions from StateB1 to StateB2.
StateB1: # M # O # E # S # I
StateB2: # M # O # E # S # I

(ii) [2 pts] 𝐵 reads from location 𝑋. At this point, 𝐴’s cache is in state StateA1, and 𝐵’s cache is in state StateB1.
Now, 𝐴 reads from location 𝑋. At this point, 𝐴’s cache is in state StateA2, and 𝐵’s cache is in state StateB2.
𝐴’s cache transitions from StateA1 to StateA2.
StateA1: # M # O # E # S # I
StateA2: # M # O # E # S # I
𝐵’s cache transitions from StateB1 to StateB2.
StateB1: # M # O # E # S # I
StateB2: # M # O # E # S # I

(iii) [2 pts] 𝐵 writes to location 𝑋. At this point, 𝐴’s cache is in state StateA1, and 𝐵’s cache is in state StateB1. Now,
𝐴 reads from location 𝑋. At this point, 𝐴’s cache is in state StateA2, and 𝐵’s cache is in state StateB2.
𝐴’s cache transitions from StateA1 to StateA2.
StateA1: # M # O # E # S # I
StateA2: # M # O # E # S # I
𝐵’s cache transitions from StateB1 to StateB2.
StateB1: # M # O # E # S # I
StateB2: # M # O # E # S # I

(iv) [3 pts] 𝐴, 𝐵, 𝐶 read from location 𝑋. 𝐴 writes to location 𝑋. 𝐵 reads from location 𝑋. 𝐶 writes to location 𝑋. 𝐴
reads from location 𝑋. At this point, 𝐴’s cache is in state StateA1, 𝐵’s cache is in state StateB1, and 𝐶’s cache is
in state StateC1.
StateA1: # M # O # E # S # I
StateB1: # M # O # E # S # I
StateC1: # M # O # E # S # I

SID: ________________________ 20

(b) [15 pts] Right Writes Despite Network Plights...
For directory based cache coherence, we have so far assumed that the network is reliable. What if it’s not? Without this
assumption, say we now have an unreliable network between the caches and the directory controller.
If a cache sends a request or response to the directory controller, the message might get dropped by the network instead
of reaching the directory controller. In that case, the directory controller would never see that specific message, since it
did not make it through the unreliable network successfully. Similarly, a message from the directory controller may
never reach the cache it was intended for.
How can we still ensure coherency under these conditions? For this problem, consider the following scenario.
Let 𝐴 and 𝐵 be cores. Let 𝐷𝐶 represent the directory controller. The available messages are:

• WriteReq(X): a write request to store data 𝑋 into memory location 𝐿, from a cache to 𝐷𝐶 .
• WriteRsp(): a write response for memory location 𝐿, from 𝐷𝐶 to a cache.
• ReadReq(): a read request to load from memory location 𝐿, from a cache to 𝐷𝐶 .
• ReadRsp(X): a read response containing the data 𝑋 that was at memory location 𝐿, from 𝐷𝐶 to a cache.
• InvReq(): an invalidate request for removing memory location 𝐿 from the cache, from 𝐷𝐶 to a cache.
• InvRsp(): an invalidate response that memory location 𝐿 has been removed from the cache, from a cache to 𝐷𝐶 .

For this question, assume that 𝐴 and 𝐵 read and write from a single memory location 𝐿, which is initialized to 0.
𝐴’s code:
read()
write(X)

𝐵’s code:
if read() == X:

write(Y)
R = read()

else:
R = Z

(i) [2 pts] Assuming that 𝐴’s and 𝐵’s caches are coherent, what are the possible values of R?

□ 0
□ 𝑋
□ 𝑌
□ 𝑍

SID: ________________________ 21

As 𝐴 and 𝐵 execute their code, the following series of events takes place:

The same series of events in a list format:

1. 𝐴 sends 𝐷𝐶 a ReadReq().
2. 𝐷𝐶 receives 𝐴’s ReadReq(), and sends 𝐴 a ReadRsp(0).
3. 𝐴 receives 𝐷𝐶’s ReadRsp(0).
4. 𝐴 sends 𝐷𝐶 a WriteReq(X).
5. 𝐷𝐶 receives 𝐴’s WriteReq(X).
6. 𝐷𝐶 sends 𝐴 a WriteRsp(), but this never makes it through the network to 𝐴.
7. 𝐵 sends 𝐷𝐶 a ReadReq().
8. 𝐷𝐶 receives 𝐵’s ReadReq(), and sends 𝐵 a ReadRsp(X).
9. 𝐵 receives 𝐷𝐶’s ReadRsp(X).

10. 𝐵 sends 𝐷𝐶 a WriteReq(Y).
11. 𝐷𝐶 receives 𝐵’s WriteReq(Y), and sends 𝐴 an InvReq().
12. 𝐴 receives 𝐷𝐶’s InvReq(), and sends 𝐷𝐶 an InvRsp().
13. 𝐷𝐶 receives 𝐴’s InvRsp(), and sends 𝐵 a WriteRsp().

(ii) [1 pt] After the above events have occurred, from the view point of 𝐴, what value does the memory location 𝐿
currently have?
0 # 𝑋 # 𝑌 # 𝑍 # Not in 𝐴’s cache

(iii) [1 pt] After the above events have occurred, from the view point of 𝐵, what value does the memory location 𝐿
currently have?
0 # 𝑋 # 𝑌 # 𝑍 # Not in 𝐵’s cache

(iv) [1 pt] After the above events have occurred, from the view point of 𝐷𝐶 , what value does the memory location 𝐿
currently have?
0 # 𝑋 # 𝑌 # 𝑍

SID: ________________________ 22

So far, from 𝐴’s perspective, its WriteReq(X) never receives a response. Let’s assume that to resolve the issue of 𝐴 never
receiving a write response from 𝐷𝐶 , 𝐴 sets up a timer.
With this new addition, when 𝐴 sends out its initial write request, it starts the timer. If 𝐴 has not received a corresponding
write response after some amount of time 𝑇1, 𝐴 will send another write request, and restart the timer.
Assume that no changes are made to 𝐷𝐶 so far, and that upon receiving any write request from 𝐴, 𝐷𝐶 will be able to
successfully send 𝐴 a write response through the network.
𝐴’s timer goes off after 𝐷𝐶 sends a WriteRsp() to 𝐵 in the initial series of events. Then, the following events occur:

1. 𝐴 sends another WriteReq(X) to 𝐷𝐶 .
2. 𝐷𝐶 receives 𝐴’s WriteReq(X).
3. 𝐷𝐶 sends 𝐵 a InvReq().
4. 𝐵 receives 𝐷𝐶’s InvReq() and sends an InvRsp().
5. 𝐷𝐶 receives 𝐵’s InvRsp() and sends 𝐴 an WriteRsp().

(v) [2 pts] After all the above events have occurred, from the view point of 𝐴, what value does the memory location 𝐿
currently have?
0 # 𝑋 # 𝑌 # 𝑍 # Not in 𝐴’s cache

(vi) [2 pts] After all the above events have occurred, from the view point of 𝐵, what value does the memory location 𝐿
currently have?
0 # 𝑋 # 𝑌 # 𝑍 # Not in 𝐵’s cache

(vii) [2 pts] After all the above events have occurred, from the view point of 𝐷𝐶 , what value does the memory location
𝐿 currently have?
0 # 𝑋 # 𝑌 # 𝑍

Now, 𝐵 wants to read what the value at memory location 𝐿 actually is. The following events occur:

1. 𝐵 sends 𝐷𝐶 a ReadReq().
2. 𝐷𝐶 receives 𝐵’s ReadReq().
3. 𝐷𝐶 sends 𝐵 a ReadRsp(_).
4. 𝐵 receives 𝐷𝐶’s ReadRsp(_).

(viii) [3 pts] What is the blank character (_) that was sent in the ReadRsp(_) in the above events? In other words, what
value does 𝐵 actually get from its second read()?
0 # 𝑋 # 𝑌 # 𝑍 # Not in 𝐵’s cache

(ix) [1 pt] Considering the example broken down in the previous parts, should 𝐴 send multiple write requests at any time
for the same write() function call in its code?
Yes # No

SID: ________________________ 23

Q9. [24 pts] Memory Consistency and Synchronization
(a) Memory Consistency True/False

For parts (i) through (iv), determine whether each given statement about memory consistency is true or false. Explain
your reasoning in no more than two sentences.

(i) [1 pt] Memory consistency models are not applicable to uniprocessor systems.
True
False

(ii) [1 pt] Memory consistency models are not applicable to systems without caches.
True
False

(iii) [2 pts] On an multicore system with 4 processors that utilize out-of-order completion, it is possible to implement
sequential consistency.

True
False

(iv) [2 pts] Adding a data prefetch unit alters the behavior of a sequentially consistent system.

True
False

SID: ________________________ 24

(b) Building a Strong Fence
(i) [2 pts] In no more than 2 sentences, explain how the code below can digress from the desired functionality – refer

to the commented code to understand the goal. Assume the processor abides by a weak memory consistency model
(fully relaxed constraints).

(ii) [4 pts] Optimally insert fences in the code below for it to achieve the desired functionality.
Recall that fence w,r means that all write instructions prior to the fence must complete before all read instructions
after the fence. Combining constraints into one fence instruction will count as multiple fences; fence w, wr will
count as two fences, for instance. So optimally inserting fences would require choosing minimally invasive fences.
Write in your fence instructions (with proper syntax) between the lines of assembly code below.

Note that x2 and x3 in both P1 and P2 point to the memory address for A and Ready respectively. Note that x6 in
P2 points to the memory address for B.

P1 P2

li x1 1 li x1 1

sw x1 0(x2) #A = 1 loop: lw x5 0(x3) #While (Ready != 1);

sw x1 0(x3) #Ready = 1; bne x5 x1 loop

lw x4 0(x2)

sw x4 0(x6) #B = A

SID: ________________________ 25

(c) [12 pts] Implementing Synchronization Primitives
Recall the load-reserved and store-conditional synchronization primitives discussed in lecture. Your pet hamster gives
you the following two RISC-V atomic instructions, and tasks you with implementing a lock function for critical sections
of code in his new indie video game. The instructions use special register(s) to hold the reservation flag and address, and
the outcome of store-conditional.

lr.w rd, rs1

• R[rd] = M[R[rs1]]
• place reservation on M[R[rs1]]

sc.w rd, rs1, rs2

• if M[R[rs1]] is reserved, then R[rd] = 0 and M[R[rs1]] = R[rs2]
• else, R[rd] = 1

(i) [4 pts] The first step is to implement the EXCH function, which uses the load-reserved and store-conditional syn-
chronization primitives to atomically exchange the value stored in Mem[a0] with a1. Fill in the first empty box with
the instruction that’s supposed to be in [BLANK 1], and the second empty box with the instruction that’s supposed
to be in [BLANK 2].

// Arguments:
// a0: The memory address for the atomic exchange
// a1: The value to be atomically written to Mem[a0]
// Returns:
// a0: The previous value of Mem[a0]

EXCH:
lr.w t0, a0
[BLANK 1]
[BLANK 2]
mv a0, t0
ret

BLANK 1

BLANK 2

SID: ________________________ 26

(ii) [3 pts] With this new atomic exchange synchronization function, you work with your hamster to develop the following
lock function for critical sections of code:

// Arguments:
// a0: The memory address of the lock

LOCKIT:
addi, sp, sp, -8
sw ra, 0(sp)
sw s0, 4(sp)
mv s0, a0

spin:
mv a0, s0
li a1, 1
jal ra, EXCH
bnez a0, spin

lw ra, 0(sp)
lw s0, 4(sp)
addi sp, sp, 8
ret

However, you begin to notice significant performance issues in certain sections of the code when multiple threads are
competing for a lock. You are currently running the game on a potato which implements the MSI (Modified, Shared,
Invalid) cache coherence protocol. Why might the above lock function not be ideal for our particular coherence
setup? Explain using (2) sentences max.

SID: ________________________ 27

(iii) [5 pts] Concerned about the portability of the new indie game to platforms that implement MSI coherence, you
work with your hamster to implement a new LOCKIT function that avoids the issue above. Fill in the corresponding
blanks in the skeleton below to complete the LOCKIT function.

// Arguments:
// a0: The memory address of the lock

LOCKIT:
addi, sp, sp, -8
sw ra, 0(sp)
sw s0, 4(sp)
mv s0, a0

spin1:
mv a0, s0
li a1, 1

spin2:
[BLANK 1]
[BLANK 2]
[BLANK 3]
bnez a0, spin1

lw ra, 0(sp)
lw s0, 4(sp)
addi sp, sp, 8
ret

BLANK 1

BLANK 2

BLANK 3

SID: ________________________ 28

CS152
 Handout #1

 8

Appendix A. A Cheat Sheet for the Bus-based RISC-V Implementation
For your reference, we have reproduced the bus-based datapath diagram as well as a summary of
some important information about microprogramming in the bus-based architecture.

Remember that you can use the following ALU operations:

ALUOp ALU Result Output
COPY_A A
COPY_B B
INC_A_1 A+1
DEC_A_1 A-1
INC_A_4 A+4
DEC_A_4 A-4
ADD A+B
SUB A-B
SLT Signed(A) < Signed(B)
SLTU A < B
Table H1-2: Available ALU operations

Also remember that Br (microbranch) column in Table H1-3 represents a 3-bit field with six
possible values: N, J, EZ, NZ, D, and S. If Br is N (next), then the next state is simply (current
state + 1). If it is J (jump), then the next state is unconditionally the state specified in the Next
State column (i.e., an unconditional microbranch). If it is EZ (branch-if-equal-zero), then the next
state depends on the value of the ALU’s zero output signal (i.e., a conditional microbranch). If
zero is asserted (== 1), then the next state is that specified in the Next State column, otherwise, it
is (current state + 1). NZ (branch-if-not-zero) behaves exactly like EZ, but instead performs a
microbranch if zero is not asserted (!= 1). If Br is D (dispatch), then the FSM looks at the opcode
and function fields in the IR and goes into the corresponding state. If S, the PC spins if busy? is
asserted, otherwise goes to (current state +1).

IR A B

32 GPRs
+ PC

(32-bit)

RegWr

RegEn

MemWr

MemEn

MA

addr addr

data data

rs2
rs1
 1(RA)

RegSel

Memory

zero?

ALUOp

Opcode

rd
32(PC)

busy?

lRLd

IntRq

Bus

ALd BLd

MALd

ALU

ALUEn

Immed
Select

ImmEn

ImmSel

SID: ________________________ 29

