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Midterm 1 
March 1, 2021 

 
Name: __________ 

SID: _____________ 
 

This is a closed book, closed notes exam 
80 minutes, 4 questions 

Notes: 
● Not all questions are of equal difficulty, so look over the entire exam! 
● Please carefully state any assumptions you make 
● Please write your name on every page of the exam 
● Do not discuss the exam with other students who haven’t taken the exam 
● If you have inadvertently been exposed to an exam prior to taking it, you must tell the 

instructor or TA. 
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Problem 1: (12 points) Iron Law 
 
Mark whether the following modifications will cause each of the first three categories to increase or 
decrease, or whether the modification will have a negligible effect. Assume all other parameters of the 
system are unchanged whenever possible. Explain your reasoning. Be explicit if you are relying on any 
specific assumptions. 
 

 Instructions per program Cycles per instruction Seconds per cycle 

Adding a second data 
bus to a single-bus 
microcoded machine 
 
 

   

Adding instructions 
with register-operand 
indexing:  
R[rd] = R[R[rs1]] + 
R[R[rs2]] 

   

Using a software 
page-table-walker, 
instead of a hardware 
PTW 
 

   

Remove support for 
precise exceptions 
 
 
 

   

Changing the base 
page size from 4 KiB 
to 8 KiB 
 
 

   

Removing byte load 
and store instructions 
from the ISA 
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Problem 2: (20 points) Microprogramming 
 
Consider the REVLL complex instruction. This instruction reverses a linked list, where the rs1 operand to 
this instruction is a pointer to the first element of the linked list. This instruction has no destination 
register, but the instruction will zero the register specified in rs1 upon completion. 
 

REVLL rs1 
 
This instruction assumes that every node in the linked list has the following structure. Assume addresses 
are 32 bits wide in this architecture.  The end of the linked list is reached when the next pointer has a 
value of 0 (NULL). 
 
struct node  
{ 
 void *value; 
 node *next; 
} 
 
For reference, the equivalent C and assembly code for this instruction are provided below. 
 

void REVLL(struct node *head) { 
  struct node *prev = NULL; 
  struct node *curr = head; 
  while (curr != NULL) { 
    struct node *next = curr->next; 
    curr->next = prev; 
    prev = curr; 
    curr = next; 
  }  
} 

 # head is passed in a0 
 # t0 holds prev 
 # t1 holds next 
 beqz a0, done 
 addi t0, t0, 0 
loop: 
 lw t1, 4(a0) 
 sw t0, 4(a0) 
 addi t0, a0, 0 
 addi a0, t1, 0 
 bnez t1, loop 
done: 

 
2.A (2 points) Unpipelined CPI 
Consider the execution of the assembly linked-list reversal code on an unpipelined RISC-V core with a 
CPI of 1 for every instruction, except for loads and stores, which take 2 cycles each. How many cycles 
does this program take to reverse a linked list with length 4 on this core? 
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2.B (12 points) Microprogramming 
In this problem, you will write the microcode to implement the REVLL instruction for a bus-based 
implementation of a RISC-V machine. This microarchitecture is identical to the one described in Handout 
#1 and Problem Set 1. Complete your implementation in the attached microcode table. 
 
The final solution should be efficient with respect to the number of 

microinstructions used. Make sure to use logical descriptions of data 

movement in the “pseudocode” column for clarity. Credit will be awarded 

for optimizing signals using “don’t care” or ∗ values as appropriate, but 

this is less important than producing a correct implementation. Please 

comment your code clearly. If the pseudocode for a line does not fit in the space provided, or if you have 
additional comments, you may write neatly in the margins. 
 
Reference material on the microcoded datapath is provided on the next page. 

 
2.C: (2 points) Microcoded performance 
How many cycles does your implementation take to reverse a linked list with length 4? Assume that the 
memory access time is 4 cycles. 
 
Compare the performance of your implementation with that of the unpipelined RISC-V core from 2.A, 
using the same memory system for both processors. Assume the unpipelined core has 4x the cycle time of 
the microcoded machine to accommodate the same memory latency. 
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State Pseudocode IR 

Ld 
Reg 
Sel 

Reg 
Wr 

Reg 
En 

A 
Ld 

B 
Ld 

ALUOp ALU 
En 

MA 
Ld 

Mem 
Wr 

Mem 
En 

Imm 
Sel 

Imm 
En 

ìBr Next State 

FETCH0: MA ← PC; 
A ← PC 

* PC 0 1 1 * * 0 1 0 0 * 0 N * 

 IR ← Mem 1 * 0 0 0 * * 0 0 0 1 * 0 S * 

 PC ← A+4 0 PC 1 0 0 * INC_A_4 1 * 0 0 * 0 D * 

. . .                 

REVLL0:                 
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Microcoding Reference Material: 

 
Available ALUOps 

ALUOp ALU Result Output 
COPY_A A 
COPY_B B 
INC_A_1 A + 1 
DEC_A_1 A - 1 
INC_A_4 A + 4 
DEC_A_4 A - 4 
ADD A + B 
SUB A - B 
SLT signed(A) < signed(B) 
SLTU A < B 

 
Immediate selector: 
Five immediate types are supported by ImmSel: ImmI, ImmU, ImmS, ImmJ, and ImmB. 
 
Microbranches: 
The μBr column represents a 3-bit field with six possible values: N, J, EZ, NZ, D, and S.  

● N (next): The next μPC is simply (current μPC + 1) 
● J (jump): The next μPC is unconditionally the state specified in the Next State column 
● EZ (branch-if-equal-zero): The next μPC depends on the value of the ALU’s zero output signal. If 

zero is asserted (𝑧𝑒𝑟𝑜 = 1), then the next μPC is that specified in the Next State column, 
otherwise, it is (current μPC + 1).  

● NZ (branch-if-not-zero): This behaves exactly like EZ but instead performs a microbranch if zero 
is not asserted (𝑧𝑒𝑟𝑜 ≠ 0).  

● D (dispatch): The FSM looks at the opcode and function fields in the IR and goes to the 
corresponding state.  

● S (spin): The μPC stalls if busy? is asserted; otherwise, it goes to (current μPC +1). 

 
I   
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Problem 2: (20 points) Skewed-Associative Caches 
 
A skewed associative cache uses a hash function on the index bits of a cache block to determine the set of 
the cache it belongs to. Each way of a skewed associative cache uses a unique hash function. 

 
Seznec, André. "A case for two-way skewed-associative caches." ACM SIGARCH computer architecture news 21.2 
(1993): 169-178. 
 
2.A. (2 points) 
Describe a code sequence that demonstrates higher performance on a skewed-associative cache than on an 
equivalent set-associative cache. 
 
 
 
 
 
 
 
 
2.B. (2 points) 
Describe a code sequence that demonstrates reduced performance on a skewed-associative cache than on 
an equivalent set-associative cache. 
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2.C  (4 points) 
Explain why a skewed-associative cache is typically implemented with unique hashing functions for each 
way of the cache. In other words, what is the advantage of using a unique hashing function for each way 
of the cache, compared to a single hashing function for all ways? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.D  (4 points) 
Explain how virtual memory aliases can be prevented from co-existing within a skewed-associative cache 
when part of the virtual page number is used for the index bits. 
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Problem 3: (26 points) Pipelining 
 
Note: The questions in 3.B, 3.C, and 3.D can be answered independently of each other. 
 

 
 
Consider the standard fully bypassed 5-stage RISC pipeline, depicted above. This pipeline additionally 
contains a simple branch predictor which always predicts PC+4 (branch not taken) in the Fetch stage. 
Note that branches and jumps redirect from the Execute stage, and that the bypass paths bypass into the 
operand pipeline registers before the Execute stage (the bypass select muxes are in the Decode stage). 
 
The subsections of this question will consider the execution of the following loop on this pipeline. 
 

1 loop: beq a1, x0, end 
2  lw t0, 0(a0) 
3  sw t0, 0(a1) 
4  addi a0, a0, 0x8 
5  lw a1, 4(a1) 
6  j loop 
7 end:  
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3.A: Basic Pipelining 
 
3.A.i: (4 points) Pipeline diagram 
Complete the pipeline diagram for the first iteration of this loop (all instructions in the table). 
 

beq F D X M W              

lw                   

sw                   

addi                   

lw                   

j                   

beq                   

 
3.A.ii: (2 points) CPI  
Compute the CPI of the loop as the number of iterations approaches infinity. 
 
 
 
 
3.B: Improving performance 
3.B.i: (3 points) Bypass paths 
Is there a bypass path you can add to improve the CPI of this code? If so, describe the bypass, and the 
new CPI as the number of iterations approaches infinity? Otherwise, explain why not. 
 
 
 
 
 
3.B.ii: (3 points) Load-delay slots 
Instead of adding a bypass path, you decide to introduce a load-delay slot to this architecture. Describe 
how to modify the code to take maximum advantage of the load-delay slot, and calculate the new CPI. 
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3.C: CISC instructions 
Instead of adding any of the features in Q3.B, you instead decide to add support for a new instruction to 
improve the performance of this code sequence. The new instruction you add is MMOV: memory-
memory move 
 
MMOV: memory-memory move 
M[R[rs2]] = M[R[rs1]] 
 
To support this new instruction, you redesign the pipeline to be IF,ID,EX,LD,ST/WB. Now stores are 
performed in parallel with writeback, while loads are still performed in the 4th stage.  
 
3.C.i: (3 points) Structural Hazards 
Does the pipeline modification introduce new structural hazards into the machine? If so, describe the 
hazard, provide a code example that demonstrates the hazard, and suggest a modification that resolves 
this hazard with minimal performance penalty. If not, explain why. 
 
 
 
 
 
 
3.C.ii: (3 points) Data Hazards 
After resolving the structural hazard, if any, does the pipeline modification still introduce new data 
hazards into the machine? If so, describe the hazard, provide a code example that demonstrates the 
hazard, and suggest a modification that resolves this hazard with minimal performance penalty. If not, 
explain why. 
 
 
 
 
 
3.C.iii: (3 points) Control Hazards 
After resolving the structural and data hazards, if any, does the pipeline modification still introduce new 
control hazards into the machine? If so, describe the hazard, provide a code example that demonstrates the 
hazard, and suggest a modification that resolves this hazard with minimal performance penalty. If not, 
explain why. 
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3.C.iv: (3 points) Precise exceptions 
Does the pipeline still support precise exceptions after this modification? If not, provide a code example 
demonstrating a case where precise exceptions are not possible, and suggest an interlock to preserve 
precise exceptions with minimal performance penalty. If yes, explain why. 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.C.v: (2 points) CISC CPI 
Given your answers to i-iv above, what is the peak CPI the instruction sequence can achieve when 
modified to use your new CISC instruction? 
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Q4: (13 points) Prefetching 
We now consider the execution of the following C code, which sums across the columns of a 2D array 
stored in row-major order.  The array elements are 32-bit ints. 
 
int A[N][M]; // N = 32, M = 256 
int sum = 0 
for (int j = 0; j < M; j++) { 
 for (int i = 0; i < N; i++) { 
  sum += A[i][j]; 
 } 
} 
 
4.A: (2 points) Cache design 
Consider an 8-way set-associative cache with 16-byte cache lines and LRU replacement. What is the 
minimum number of sets this cache needs such that this code will only produce compulsory misses? 
 
 
 
 
 
 
 
 
4.B: (2 points) VIPT 
Suppose the cache is virtually indexed and physically tagged.  Does the number of sets you came up with 
in 4.A introduce a virtual aliasing issue assuming a 4 KiB page size?  Explain. 
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4.C (3 points) Software prefetcher 
You would like to reduce the frequency of compulsory misses in this code by adding software prefetching 
instructions. You measure the L1 miss penalty to be 40 cycles. When you replace the prefetch instruction 
with a NO-OP, the first 512 iterations of the inner loop take 50 cycles each to complete. What should the 
OFFSET of the prefetch instruction be to maximize timeliness? 
 
int A[N][M]; // N = 32, M = 256 
int sum = 0; 
for (int j = 0; j < M; j++) { 
 for (int i = 0; i < N; i++) { 
        prefetch(&A[i][j] + OFFSET); // prefetches A[i][j] + OFFSET 
  sum += A[i][j]; 
 } 
} 
 
 
 
 
4.D: (3 points) SW Prefetching and Virtual Memory 
After adding software prefetching, you notice that performance degrades significantly when running in 
user mode (with virtual memory) compared to running in machine mode (no virtual memory). Assume the 
cache has a fully-associative TLB with 4 entries and LRU replacement, the page size is 4 KiB, and that 
the matrix is aligned to a page boundary.  Suggest a reason why performance degrades and a potential 
solution that retains the same TLB design.  
 
 
 
 
 
4.E: (3 points) Hardware Prefetching and Virtual Memory 
You realize this code has a very regular memory access pattern, and thus is amenable to hardware 
prefetching. You implement a stride-based hardware prefetcher that observes L1 misses to DRAM, and 
continues to prefetch along a sequence of regularly strided accesses. While your prefetcher behaves well 
when the code is run in machine mode (no virtual memory), you find that performance is abysmal when 
the code is run in user mode (with virtual memory). Suggest a reason why. 
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Q5: (12 points) Virtual Memory 
 
Consider a page-based virtual memory system with 64-byte pages and 4-byte PTEs. The VPN is 8 bits 
wide. A two-level page table scheme uses the upper 4 bits of the VPN for the level 1 index and the lower 
4 bits as the level 2 index. The TLB is 4-way fully-associative. A hardware page table walker (PTW) 
performs page table walks on a TLB miss. 
 
Consider the following code, which sequentially traverses every byte in the virtual address space. 
 
void traverse() { 
   char *t = (char *) 0x0; 
   while (t < MAX_VADDR) { 
     char l = *t; 
     t += 1; 
   } 
} 
 
4.A: (4 points) Hierarchical Page Table 
After executing the code above, what is the total size of the page table, and how many accesses to data 
memory did the PTW make?  Assume that no pages are initially allocated in the page table. 
 
 
 
 
 
 
 
 
 
4.B: (4 points) L2 TLB 
We now add a 16-entry fully-associative L2 TLB with LRU replacement. Unlike the normal “L1” TLB, 
the L2 TLB caches both leaf and hierarchical PTEs and is searched by the PTW before accessing data 
memory. How many requests does the PTW make to memory with a L2 TLB? 
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4.C: (4 points) AMAT with Virtual Memory 
Derive an equation to approximate AMAT for this code, accounting for the additional delay from page-
table-walks, and the additional delay when the OS is executing the page fault handler. You may reference 
the following variables in your formula. 
  

● W - ways in cache 
● S - sets in cache 
● L - bytes per cache line 
● P - bytes per page 
● N - L1 miss penalty 
● R - average PTW memory requests per TLB miss 
● H - PTW L1 hit rate 
● K - average time for OS to service a page fault 


