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1. Microprogramming [12 pts]

You are asked to write microcode for a new instruction called SQUARE, defined as follows:

R[rd] = R[rs1] * R[rs1]

This instruction will be implemented on the microcoded single-bus RISC-V machine that we introduced in
Problem Set 1, see below.

Unfortunately, your ALU does not support a multiplication operation, but you can perform the square
operation as a simple loop of consecutive additions, as follows:

// Compute x*x

int result = x;

int count = x - 1;

while (count != 0) {

result += x;

count -= 1;

}

You are permitted to modify R[rd] and R[rs2], but you should not modify any other architectural state.
Also, assume that “x” ≥ 1.

Express your answer by filling in the microcode table below. Remember to mark “don’t care” entries with
a “*”. Minimize the total number of micro-instructions you use.

Hint: One approach is to store “x” in B, temporary values for “count” in R[rs2], and temporary values for
“result” in R[rd]. (You are not required to follow this convention).

The microcoded machine is identical to the one we introduced in Problem Set 1. For your reference, we have
reproduced the single-bus datapath, as well as information about the ALU and µbranch logic.
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Here are our standard possible values for the µBR column:

N next

J jump

EZ branch-if-equal-zero

NZ branch-if-not-zero

D dispatch

S spin on busy? signal

Finally, here are the operations the ALU supports:

ALUOp ALU Result Output

COPY A A

COPY B B

INC A 1 A+1

DEC A 1 A-1

INC A 4 A+4

DEC A 4 A-4

ADD A+B

SUB A-B

SLT Signed(A) <Signed(B)

SLTU A <B
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2. Virtual Memory [19 pts]

(a) Page Table Calculations [3 pts]

Consider a computer with 256-byte pages, 16-bit virtual addresses, and 16-bit PTEs (4 bits of which
are used for valid and protection). The computer uses two-level hierarchical page tables. Assume the
machine is byte-addressable.

i. How many virtual pages can be addressed by this computer?

ii. What is the maximum size of the physical memory that can be supported by this computer?

iii. Suppose that a running program is currently using 300 bytes of memory. What is the smallest
possible number of PTEs and PTPs that can be valid in the page table(s) of this program?
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(b) Memory Trace With Linear Page Table [10 pts]

Suppose that a computer has 8-bit virtual addresses, 32-byte pages, 4-byte PTEs, a linear (i.e. single-
level) page table, and a 4-entry TLB with LRU replacement policy.

At the beginning, the TLB is empty and the free page list is (in this order): 0x1, 0x6, 0x3, 0x5, 0xA.

The following virtual addresses are accessed by the programmer (in this order): 0x4A, 0x22, 0x15, 0x20,
0x81, 0x62.

Fill out the following tables:

• Table 1, describing the TLB hits, page fault, and physical addresses of different memory accesses.

• Table 2, describing the linear page table at the end of the memory access trace. (Assume the page
table begins at address 0x0). Leave page table entries blank if they are invalid.

• Table 3, describing the TLB at the end of the memory access trace.

We have already filled in the beginnings of the tables for you.

Table 1: Memory Access Trace
Virtual Address Page table index TLB hit/miss Page hit/fault Physical address
0x4A 0x2 miss hit 0x8A
0x22
0x15
0x20
0x81
0x62

Table 2: Page Table Entries
Address PTE (excluding valid bit)
0x00
0x04
0x08 0x4
0x0c 0x20
0x10
0x14
0x18 0x2
0x1C

Table 3: TLB
VPN 0x2
PPN 0x4
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(c) Two-Level Page Table [2 pts]

A computer has two-level page tables. All page tables (at either level) hold four 8-byte entries. Pages
are 32 bytes long. Virtual addresses are 9 bits wide. Currently, a program is running with only one
page allocated. This page has a VPN of 0xA and a PPN of 0x3. The base page table starts at address
0x0, and the second-level page table starts at address 0x20. Given this information:

i. Can we know, from the information above, which entries in the base page table are valid? If so,
which entries are valid and what are the PTPs/PPNs stored in those entries?

ii. Can we know, from the information above, which entries in the second-level page table are valid?
If so, which entries are valid and what are the PPNs stored in those entries?

(d) Qualitative Short Question [4 pts]

i. Suppose you increased the length of your virtual addresses. How would this affect the speed of your
page table walker? Explain your reasoning. Assume that the page size and the page table size (in
bytes) do not change.

ii. Under what conditions would you prefer a linear page table over a hierarchical page table?

iii. What is one advantage and one disadvantage of replacing a virtually-indexed, physically-tagged
cache (VIPT) with a virtually-indexed, virtually-tagged cache (VIVT)?
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3. Caches [16 pts]

(a) Cache Sub-Blocks [8 pts]

We will consider a cache optimization known as “sub-blocking” (also called “sectored caches”):

• The number of sets and ways is unchanged.

• Each cache block is broken up into smaller “sub-blocks”.

– Each sub-block has its own valid bit.

– On a cache miss, only the cache sub-blocks accessed by the user’s program are loaded in.

∗ Other sub-blocks remain in the “invalid” state until they are also loaded in.

• Make sure you understand that “sets” are not “sub-blocks”!

Suppose that we have an 8 KB, two-way set associative cache with 4-word (16-byte) cache lines. The
replacement policy is LRU. Each cache block is broken up into four smaller sub blocks.

We will evaluate the following two loops:

// Loop A

sum = 0;

for (int i = 0; i < 128; i++)

for (int j = 0; j < 32; j++)

sum += buf[i*32 + j];

// Loop B

sum = 0;

for (int j = 0; j < 32; j++)

for (int i = 0; i < 128; i++)

sum += buf[i * 32 + j];

i. What is the number of misses for Loop A and for Loop B with the sectored cache?

ii. What is the number of misses for Loop A and for Loop B if the cache is not sectored (i.e. no
sub-blocks)?

iii. Qualitatively explain whether our sectoring scheme has improved the average memory access time
of Loop A and Loop B. If so, why? If not, why not?
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(b) Memory Access Time Tradeoffs [2 pts]

Suppose that we removed an outer-level cache to free up area on our chip. With this new area, we
doubled the size of our L1 cache.

Suppose that this optimization worsened the L1 hit time from 1 cycle to two cycles, and increased the
miss penalty from 50 cycles to 100 cycles. Before this optimization, the L1 miss rate was 10%.

What does the new miss rate have to be for our new optimization to improve the average L1 cache
access time?

(c) Short Qualitative Questions [6 pts]

i. How do write buffers affect write miss penalties in a write-through cache? (A write miss occurs
when the program attempts to STORE to an address that is not in the cache). Explain your
reasoning.

ii. How do write buffers affect read miss penalties? (A read miss occurs when the program attempts
to LOAD from an address that is not in the cache). Explain your reasoning.

iii. What advantages does adding a victim cache have over simply extending the size of an existing
cache?
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4. Iron Law [6 pts]

(a) Suppose we could add complex instructions (like polynomial instructions or memory-to-memory instruc-
tions) to the RISC-V Base ISA. How would this affect processor performance and hardware complexity?
Refer to elements of the Iron Law in your answer.

(b) Suppose we extended the RISC-V Base ISA with new 8-bit instructions. (RISC-V Base ISA instructions
are 32 bits). Programmers would be permitted to freely mix 32-bit and 8-bit instructions in their code.
How would this affect processor performance and hardware complexity? Refer to elements of the Iron
Law in your answer.
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5. Pipelining [15 pts]

For this question, consider the six-stage pipeline below, designed for a single-accumulator ISA:

Fetch Decode
Address
generation

Memory Execute Writeback

This is similar to the accumulator ISA described in Problem Set 1. Note the accumulator is read during the
DECODE stage, and written to in the WRITEBACK stage. In this ISA, the only way to reference memory
locations is with immediate offsets from the PC. There is no register-indirect addressing.

There are three types of instructions in this ISA: Arithmetic, Load/Store, and Branch instructions.

Arithmetic instructions load one operand from memory, apply it to the value in the accumulator, and store
the result in the accumulator. E.g: ADD 112 (add the value stored in PC+112 to the accumulator).

Load/store instructions load or store the value in the accumulator to/from memory. E.g. Load 112 (load
the value stored in PC+112 to the accumulator).

Branch instructions check if the accumulator is zero or not zero, and branch accordingly. Branches are
resolved in the EXECUTE stage of the pipeline. In case of a mispredict, we flush the pipeline of earlier
instructions. E.g: Branch-if-Zero 112 (branch to PC+112 if the accumulator value is 0).

(a) Hazards [8 pts]

i. Which bypass paths are necessary to minimize stalls caused by RAW hazards in this design?

ii. Are WAR, WAW, or control hazards possible in this design? If so, what hardware interlocks must
be added to resolve those hazards?
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(b) Pipeline Diagram [3 pts]

Consider the code below which runs on the pipelined CPU. Remember that all instructions use PC-
relative offsets.

PC Instruction Comment

0 Add 100 // Result of Add is 0

4 Store 100

8 Load 96

12 Branch-if-zero 8 // This branch is taken

16 Nop // This Nop is skipped over by the previous Branch-if-zero

20 Add 80

...

100 0x0 // This address stores data, rather than instructions

104 0x0 // This address also stores data, rather than instructions

Assume that the pipeline always predicts that branches are not taken. In other words, even though the
Branch-if-zero above was taken, the CPU initially predicted that it was not taken.

Also, assume that the pipeline above is fully bypassed. This means that you can bypass results from
the end of any stage to the end of any earlier stage.

Fill in this pipeline diagram of these instructions. The first row has been filled in for you:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Add 100 F D A M E W
Store 100

Load 96

Branch-if-zero 8

Add 80
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(c) Exceptions [4 pts]

Assume that branch, load, and store instructions can all cause exceptions. Exceptions may be detected
in the Address-Gen, Memory, and Execute stages. Under these conditions, the pipeline above does not
support precise exceptions, unless new hardware modifications are made.

i. Propose a hardware modification which would make exceptions precise for this pipeline.

ii. Suppose that the hardware designer refuses to add support for precise exceptions. What could the
programmer do when running on this six-stage pipeline to eliminate the possibility of imprecise
exceptions?
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