
CS152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

VLIW, Vector, and
Multithreaded Machines

Assigned 3/14/2023 Problem Set #4 Due 3/31/2023
v.1.1

http://inst.eecs.berkeley.edu/~cs152/sp23

The problem sets are intended to help you learn the material, and we encourage you to
collaborate with other students and to ask questions in discussion sections and office hours to
understand the problems. However, each student must turn in their own solution to the problems.

The problem sets also provide essential background material for the exam and the midterms. The
problem sets will be graded primarily on an effort basis, but if you do not work through the
problem sets you are unlikely to succeed on the exam or midterms! We will distribute solutions
to the problem sets on the day the problem sets are due to give you feedback. Homework
assignments are due at the beginning of class on the due date, and all assignments are to be
submitted through Gradescope. Late homework will not be accepted, except for extreme
circumstances and with prior arrangement.

1

Problem 1: Trace Scheduling

Trace scheduling is a compiler technique that increases ILP by removing control dependencies,
allowing operations following branches to be moved up and speculatively executed in parallel
with operations before the branch. It was originally developed for statically scheduled VLIW
machines, but it is a general technique that can be used in different types of machines and in this
question we apply it to a single-issue RISC-V processor.

Consider the following piece of C code (% is modulus) with basic blocks labeled:

A if (data % 3 == 0)
B X = V0 /

V1; else
C X = V2 / V3;
D if (data % 4 == 0)
E Y = V0 *

V1; else
F Y = V2 * V3;
G

Assume that data is a uniformly distributed integer random variable that is set sometime before
executing this code.

The program’s control flow graph is The decision tree is

A A

B C B C

D D
D

E F E F
E F

Path G G G G
probabilities

G :

A control flow graph and the decision tree both show the possible flow of execution through
basic blocks. However, the control flow graph captures the static structure of the program, while
the decision tree captures the dynamic execution (history) of the program.

2

Problem 1.A

On the decision tree, label each path with the probability of traversing that path. For example,
the leftmost block will be labeled with the total probability of executing the path ABDEG.
(Hint: you might want to write out the cases). Circle the path that is most likely to be executed.

Problem 1.B

This is the RISC-V code:
A: lw x1, data

remi x2, x1, 3 # x2 <- x1 % 3
bnez x2, C

B: div x3, x4, x5 # X <- V0 / V1
j D

C: div x3, x6, x7 # X <- V2 / V3
D: remi x2, x1, 4 # x2 <- x1 % 4

bnez x2, F
E: mul x8, x4, x5 # Y <- V0 * V1

j G
F: mul x8, x6, x7 # Y <- V2 * V3
G:

This code is to be executed on a single-issue processor with perfect branch
prediction. Assume that the memory, divider, and the multiplier are all separate, long
latency, unpipelined units that can be run in parallel. Note that the instruction to
calculate the remainder (REMI) runs on the divider.

Assume that the load takes x cycles, the divider takes y cycles, and the multiplier
takes z cycles. Approximately how many cycles does this code take in the best case,
in the worst case, and on average? (ignore the latency of ALU)

3

Problem 1.C

With trace scheduling, we can obtain the following code:

ACF: ld x1, data
div x3, x6, x7 # X <- V2 / V3
mul x8, x6, x7 # Y <- V2 * V3

A: remi x2, x1, 3 # x2 <- x1 % 3
bnez x2, D

B: div x3, x4, x5 # X <- V0 / V1
D: remi x2, x1, 4 # x2 <- x1 % 4

bnez x2, G
E: mul x8, x4, x5 # Y <- V0 * V1
G:

We optimize only for the most common path, but the other paths are still correct. Approximately
how many cycles does the new code take in the best case, in the worst case and on average?

If memory takes the most cycles (i.e. x >= y, z), is this code faster in the best case, in the worst
case and on average than the code in Problem 1.B?

If either of the functional units has the longest latency (i.e. y, z >= x), is this code faster in the
best case, in the worst case and on average than the code in Problem 1.B?

4

Problem 2: VLIW machines

In this problem, we consider the execution of a code segment on a VLIW processor. The code we
consider is the SAXPY kernel, which scales a vector X by a constant A, adding this quantity to a
vector Y.

for(i = 0; i < N; i++) {
Y[i] = Y[i] + A*X[i];

}

loop: 1.ld f1, 0(x1) # f1 = X[i]
2.fmul f2, f0, f1 # A * X[i]
3.ld f3, 0(x2) # f3 = Y[i]
4.fadd f4, f2, f3 # f4 = Y[i] + A*X[i]
5.sd f4, 0(x2) # Y[i] = f4
6.addi x1, x1, 4 # bump pointer
7.addi x2, x2, 4 # bump pointer
8.bne x1, x3, loop # loop

Now we have a VLIW machine with seven execution units:
- two ALU units, latency one cycle, also used for branch operations
- three memory units, latency three cycles, fully pipelined, each unit can perform either a

store or a load
- two FPU units, latency four cycles, fully pipelined, one unit can perform fadd

operations, the other fmul operations.

Below is the format of a VLIW instruction:

Int Op 1 Int Op 2 Mem Op 1 Mem Op 2 Mem Op 3 FP Add FP Mul

Our machine has no interlocks. The result of an operation is written to the register file
immediately after it has gone through the corresponding execution unit: one cycle after issue for
ALU operations, three cycles for memory operations and four cycles for FPU operations. The old
values can be read from the registers until they have been overwritten.

When writing code for this machine, you may assume:
1) The arrays are long (> 32 elements)
2) The arrays have an even number of elements

5

Problem 2.A: No Code Optimization

Schedule instructions for the VLIW machine in Table P4.2-1 without loop unrolling and software
pipelining . What is the throughput of the loop in the code in floating point operations per cycle
(FLOPS/cycle)?

Problem 2.B: Loop Unrolling

Schedule instructions for the VLIW machine in Table P4.2-2 only with loop unrolling. Write the
assembly code by unrolling the loop once. What is the throughput of the loop in the code in
floating point operations per cycle (FLOPS/cycle)? What is the speedup over Problem P4.2.A?

6

Problem 2.C: Software Pipelining

Schedule instructions for the VLIW machine in Table P4.2-3 only with software pipelining.
Include the prologue and the epilogue in Table P4.2-3. What is the throughput of the loop in the
code in floating point operations per cycle (FLOPS/cycle)? What is the speedup over Problem
P4.2.A?

Problem 2.D: Loop Unrolling + Software Pipelining

Schedule instructions for the VLIW machine in Table P4.2-4 with both loop unrolling and
software pipelining. Unroll the loop once as in Problem 2.B. Include the prologue and the
epilogue in Table P4.2-3. What is the throughput of the loop in the code in floating point
operations per cycle (FLOPS/cycle)? What is the speedup over Problem 2.A?

7

ALU ALU2 MU1 MU2 MU3 FADD FMUL

8

Table P4.2-1: Code Scheduling without Optimization

9

ALU1 ALU2 MU1 MU2 MU3 FADD FMUL

Table P4.2-2: Code Scheduling with Loop Unrolling

10

11

ALU1 ALU2 MU1 MU2 MU3 FADD FMUL

Table P4.2-3: Code Scheduling with Software Pipelining

12

13

ALU1 ALU2 MU1 MU2 MU3 FADD FMUL

Table P4.2-1: Code Scheduling with Loop Unrolling and Software Pipelining

14

Problem 3: Vector Machines

In this problem, we analyze the performance of vector machines. We start with a baseline vector
processor with the following features:

● 32 elements per vector register
● 8 lanes
● One ALU per lane: 1 cycle latency
● One load/store unit per lane: 4 cycle latency, fully pipelined
● No dead time
● No support for chaining
● Scalar instructions execute on a separate 5-stage pipeline

To simplify the analysis, we assume a magic memory system with no bank conflicts and no
cache misses.

We consider execution of the following loop:

C code
for (i = 0; i < N; i++) {

C[i] = A[i] + B[i] – 1;
}

loop: 1.LV V1, (x1) # load A
2.LV V2, (x2) # load B
3.ADDV V3, V1, V2 # A + B
4.SUBVS V4, V3, x4 # subtract x4 = 1
5.SV V4, (x3) # store C
6.ADDI x1, x1, 128 # bump pointer
7.ADDI x2, x2, 128 # bump pointer
8.ADDI x3, x3, 128 # bump pointer
9.SUBI x5, x5, 32 # i++ (x5 = N)
10.BNQZ x5, loop # loop

Problem 3.A: Simple Vector Processor

Complete the pipeline diagram in Table P4.4-1 of the baseline vector processor running
the given code. The following supplementary information explains the diagram:
Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M),
and writeback (W). A vector instruction is also fetched (F) and decoded (D). Then, it
stalls (—) until its required vector functional unit is available. With no chaining, a
dependent vector instruction stalls until the previous instruction finishes writing back all
of its elements. A vector instruction is pipelined across all the lanes in parallel. For each
element, the operands are read (R) from the vector register file, the operation executes on
the load/store unit (M) or the ALU (X), and the result is written back (W) to the vector
register file. A stalled vector instruction does not block a scalar instruction from
executing.

15

Inst
#

cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 F D R M1 M2 M3 M4 W

1 R M1 M2 M3 M4 W

1 R M1 M2 M3 M4 W

1 R M1 M2 M3 M4 W

2 F D ⎯ ⎯ ⎯ R M1 M2 M3 M4 W

2 R M1 M2 M3 M4 W

2 R M1 M2 M3 M4 W

2 R M1 M2 M3 M4 W

3 F D ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ R X1 W

3 R X1 W

3 R X1 W

3 R X1 W

4 F D ⎯
4

4

4

5 F D

5

5

5

6 F D X M W

7 F D X M W

8 F D X M W

9 F D X M W

10 F D X M W

1 F D ⎯
1

1

1

16

Table P4.3-1: Vector Pipeline Diagram (8 Lanes without Chainning)

17

Problem 3.B: Hardware Optimization (Chaining)

In this question, we analyze the performance benefits of chaining and additional
lanes. Vector chaining is done through the register file and an element can be read
(R) on the same cycle in which it is written back (W), or it can be read on any later
cycle (the chaining is flexible). For this question, we always assume 32 elements per
vector register, so there are 4 elements per lane with 8 lanes, and 1 element per lane
with 32 lanes.

To analyze performance, we calculate the total number of cycles per vector loop
iteration by summing the number of cycles between the issuing of successive vector
instructions. For example, in Question P3.4.A, Inst #1(LV) begins execution in cycle
3, Inst #2(LV) in cycle 7 and Inst #3(ADDV) in cycle 16. Therefore, there are 4
cycles between Inst #1 and Inst #2 and 9 cycles between Inst #2 and Inst #3.

First, fill in Table P4.3-2 for 8 lanes with chaining, Table P4.3-3 for 16 lines with
chaining, and Table P4.3-4 for 32 lanes with chaining. Note that, with 8 lanes and
chaining, Inst #4(SUBVS) cannot issue 2 cycles after Inst #3(ADDV) because there
is only one ALU per lane.

Also, complete the following table. The first row corresponds to the baseline 8-lane
vector processor with no chaining. The second row adds flexible chaining to the
baseline processor, and the last two rows increase the number of lanes from 8 to 32.

Vector
Processor

Configuration

Number of cycles between
successive vector instructions Total cycles

per vector
loop iteration#1(LV)

#2(LV)
#2(LV)

#3(ADDV)
#3(ADDV)
#4(SUBVS)

#4(SUBVS)
#5(SV)

#5(SV)
#1(LV)

8 lanes,
no chaining 4 9 6 6 4 29

8 lanes,
chaining
16 lanes,
chaining
32 lanes,
chaining

18

Inst
#

cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 F D R M1 M2 M3 M4 W

1 R M1 M2 M3 M4 W

1 R M1 M2 M3 M4 W

1 R M1 M2 M3 M4 W

2 F D ⎯ ⎯ ⎯ R M1 M2 M3 M4 W

2 R M1 M2 M3 M4 W

2 R M1 M2 M3 M4 W

2 R M1 M2 M3 M4 W

3 F D ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ R X1 W

3 R X1 W

3 R X1 W

3 R X1 W

4 F D ⎯
4

4

4

5 F D

5

5

5

6 F D X M W

7 F D X M W

8 F D X M W

9 F D X M W

10 F D X M W

1 F D ⎯
1

1

1

19

Table P4.3-2: 8 Lanes with Chaining

Inst
#

cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 F D R M1 M2 M3 M4 W

1 R M1 M2 M3 M4 W

2 F D ⎯
2

3 F D ⎯
3

4 F D ⎯
4

5 F D ⎯
5

6 F D X M W

7 F D X M W

8 F D X M W

9 F D X M W

10 F D X M W

1 F D ⎯
1

Table P4.3-3: 16 Lanes with Chaining

Inst
#

cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 F D R M1 M2 M3 M4 W

2 F D

3 F D ⎯

4 F D ⎯

5 F D ⎯
6 F D X M W

20

7 F D X M W

8 F D X M W

9 F D X M W

10 F D X M W

1 F D ⎯

Table P4.3-3: 32 Lanes with Chaining

21

Problem 4: Multithreading

This problem evaluates the effectiveness of multithreading using a simple database
benchmark. The benchmark searches for an entry in a linked list built from the
following structure, which contains a key, a pointer to the next node in the linked list,
and a pointer to the data entry.

struct node {
int key;
struct node *next;
struct data *ptr;

}

The following RISC-V code shows the core of the benchmark, which traverses the
linked list and finds an entry with a particular key.

loop: LW x3, 0(x1) # load a key
LW x4, 4(x1) # load the next pointer
SEQ x3, x3, x2 # set x3 if x3 == x2
BNEZ x3, end # found the entry
ADD x1, x0, x4
BNEZ x4, loop # check the next node

end:

We run this benchmark on a single-issue in-order processor. The processor can fetch and
issue (dispatch) one instruction per cycle. If an instruction cannot be issued due to a data
dependency, the processor stalls. Integer instructions take one cycle to execute and the
result can be used in the next cycle. For example, if SEQ is executed in cycle 1, BNEZ
can be executed in cycle 2. We also assume that the processor has a perfect branch
predictor with no penalty for both taken and not-taken branches.

Problem 4.A

Assume that our system does not have a cache. Each memory operation directly
accesses main memory and takes 50 CPU cycles. The load/store unit is fully pipelined,
and non-blocking. After the processor issues a memory operation, it can continue
executing instructions until it reaches an instruction that is dependent on an outstanding
memory operation. How many cycles does it take to execute one iteration of the loop in
steady state?

Instruction Start Cycle End Cycle
LW x3, 0(x1)
LW x4, 4(x1)
SEQ x3, x3, x2
BNEZ x3, End
ADD x1, x0, x4
BNEZ x1, Loop

22

Problem 4.B

Now we add zero-overhead multithreading to our pipeline. A processor executes
multiple threads, each of which performs an independent search. Hardware mechanisms
schedule a thread to execute each cycle.

In our first implementation, the processor switches to a different thread every cycle using
fixed round robin scheduling (similar to CDC 6600 PPUs). Each of the N threads
executes one instruction every N cycles. What is the minimum number of threads that
we need to fully utilize the processor, i.e., execute one instruction per cycle?

Problem 4.C

How does multithreading affect throughput (number of keys the processor can find within
a given time) and latency (time processor takes to find an entry with a specific key)?
Assume the processor switches to a different thread every cycle and is fully utilized.
Check the correct boxes.

Throughput Latency
Better √
Same
Worse √

Problem 4.D

We change the processor to only switch to a different thread when an instruction cannot
execute due to data dependency. What is the minimum number of threads to fully utilize the
processor now? Note that the processor issues instructions in-order in each thread.

23

Problem 5: Multithreading

Consider a single-issue in-order multithreading processor that is similar to the one
described in Problem 4.

Each cycle, the processor can fetch and issue one instruction that performs any of the
following operations:

● load/store, 13-cycle latency (fully pipelined)
● integer add, 1-cycle latency
● floating-point add, 6-cycle latency (fully pipelined)
● branch, no delay slots, 1-cycle latency

The processor does not have a cache. Each memory operation directly accesses main
memory. If an instruction cannot be issued due to a data dependency, the processor stalls.
We also assume that the processor has a perfect branch predictor with no penalty for both
taken and not-taken branches.

You job is to analyze the processor utilizations for the following two thread-switching
implementations:

Fixed Switching: the processor switches to a different thread every cycle using fixed
round robin scheduling. Each of the N threads executes an instruction every N cycles.

Data-dependent Switching: the processor only switches to a different thread when an
instruction cannot execute due to a data dependency.

Each thread executes the following RISC-V code:

loop: LD f2, 0(x1) # load data into
f2

ADDI x1, x1, 4 # bump pointer
FADD f3, f3, f2 # f3 = f3 + f2
BNE f2, f4, loop # continue if f2 != f4

24

Problem 5.A

What is the minimum number of threads that we need to fully utilize the processor for
each implementation? Briefly explain your reasoning.

Fixed Switching: ________________ Thread(s)

Data-dependent Switching: _______________ Thread(s)

Problem 5.B

What is the minimum number of threads that we need to fully utilize the processor for
each implementation if we change the load/store latency to 1-cycle (but keep the
6-cycle floating-point add)? Briefly explain your reasoning.

Fixed Switching: ________________ Thread(s)

Data-dependent Switching: ________________ Thread(s)

25

Problem 5.C

Consider a Simultaneous Multithreading (SMT) machine with limited hardware
resources. Circle the following hardware constraints that can limit the total number of
threads that the machine can support. For the item(s) that you circle, briefly describe the
minimum requirement to support N threads.

(A) Number of Functional Unit:

(B) Number of Physical Registers:

(C) Data Cache Size:

(D) Data Cache Associatively:

26

