
CS 152 Laboratory Exercise 2

Professor: Sophia Shao
Department of Electrical Engineering & Computer Sciences

University of California, Berkeley

February 14, 2022

Revision History

Revision Date Author(s) Description

1.0 2022-02-03 hngenc Initial release
2.0 2023-02-14 abe.gonzalez Chipyard bump, setup updates
2.1 2023-02-23 abe.gonzalez Re-install conda instructions

1 Introduction and Goals

The goal of this laboratory assignment is to study processor memory hierarchy design
by conducting experiments on realistic RISC-V implementations. You will be running
simulations of silicon-proven RTL along with a DRAM model.

1.1 Graded Items

All reports are to be submitted through Gradescope. Please label each section of the
results clearly. All directed items need to be turned in for evaluation. Your group only
needs to submit one of the problems in the open-ended portion.

• (Directed) Problem 3: Matrix Transposition Case Study
• (Open-ended) Problem 4.1: Validation and Reverse Engineering of Memory Hierarchies
• (Open-ended) Problem 4.2: Design Your Own Hardware Prefetcher
• (Open-ended) Problem 4.3: Design Your Own Replacement Policy and Victim Cache
• (Directed) Problem 5: Feedback

Please limit your directed portion submissions to (1) page of text (excluding figures)! →
with 11 pt font or greater, and your open-ended portion submissions to (2) pages of text
(excluding figures) for individual submissions and (3) pages of text (excluding figures)
for group submissions with 11 pt font or greater. Charts, tables, and figures – where
appropriate – are excellent ways to succinctly summarize your data.

2 Background

As with Lab 1, this lab is based on the Chipyard framework being actively developed
UC Berkeley. However, we will be exploring more sophisticated hardware designs than
the rudimentary Sodor processors from the previous lab.

2.1 Chipyard

Chipyard is an integrated design, simulation, and implementation framework for agile
development of systems-on-chip (SoCs). It combines Chisel, the Rocket Chip generator,
and other Berkeley projects to produce a full-featured RISC-V SoC from a rich library of
processor cores, accelerators, memory system components, and I/O peripherals. Chipyard
supports several hardware development flows, including software RTL simulation, FPGA-
accelerated simulation (FireSim), and automated VLSI methodologies (Hammer).

Chipyard documentation: https://chipyard.readthedocs.io/en/latest/! →

2.2 Rocket Chip

Rocket Chip [1] is an open-source SoC generator originally developed at UC Berkeley. It
leverages Chisel to compose a library of highly parameterized generators for cores, caches,
and interconnects into an integrated SoC. It has been the basis of numerous silicon-proven
designs in both research and industry.

Rocket Chip can generate a practically unbounded space of instances, including many
parameter sets that are impractical or suboptimal. In this lab, we will examine a variety of
design points, each with a different memory hierarchy, to explore the concepts described in
class. All Rocket Chip instances used in this lab have three major components: processor
cores, a cache hierarchy, and an outer memory system.

2.2.1 Rocket Microarchitecture

Rocket Chip derives its name from the Rocket core that it instantiates by default: a
5-stage, single-issue, in-order RISC-V processor. The instances of Rocket used in this lab
implement the RV64IMAFDC instruction set variant1, which refers to the 64-bit RISC-V
base ISA (RV64I) along with a set of useful extensions [2]: M for integer multiply/divide,
A for atomic memory operations, F and D for single- and double-precision floating-point,
and C for 16-bit compressed representations of common instructions

Rocket also supports the RISC-V privileged architecture [3] with machine, supervisor,
hypervisor, and user modes. It has an MMU that implements the Sv39 virtual memory
scheme, which provides 39-bit virtual address spaces with 4 KiB pages. As such, these
designs are capable of booting mainstream operating systems such as Linux.

Rocket has been extensively optimized for efficient ASIC implementation, resulting in
specific microarchitectural adaptations that differentiate it from the classic 5-stage RISC
pipeline normally seen in educational settings. In particular, the overall design is mainly
1 Also known as RV64GC, with G (“general-purpose”) being the canonical shorthand for “IMAFD”

CS 152 Lab 2 2

https://chipyard.readthedocs.io/en/latest/

Figure 1: Rocket pipeline

concerned with (1) minimizing high-fanout stall signals and (2) restructuring pipeline
logic to cope with long clock-to-Q delays of compiler-generated SRAMs. Several factors
contribute to improved reduction in critical paths compared to more naive approaches:

1. Instructions are not permitted to stall except in the ID stage for data and known
structural hazards.

2. Most hazards that arise in EX or later stages are handled by replaying (re-fetching
and re-executing) the instruction upon reaching WB (not unlike how exceptions
propagate down the pipeline). One notable case is load-hit speculation, in which an
instruction that depends on a load result can be issued before it is known whether
the load is a cache hit.

3. Branch conditions are resolved in EX, but the PC is redirected in MEM. The 3-cycle
mispredict penalty is mitigated by branch prediction provided by a configurable
branch target buffer (BTB), branch history table (BHT), and a return address
stack (RAS).

4. Bypass muxes are moved into EX with the selects precomputed in ID; bypass data
comes directly from pipeline registers to the extent possible.

5. Some variable-latency operations (e.g., L1D miss, divide) use a scoreboard to track
pending register writes. This enables instructions to complete out of program order
so that a long-latency operation does not halt the pipeline for subsequent instruc-
tions. Consequently, with a non-blocking L1 data cache, multiple misses can be
serviced simultaneously.

2.2.2 Cache Hierarchy

The basic unit of replication for a core in Rocket Chip is a tile.2 Each tile consists of one
core (Rocket) and a portion of the inner cache hierarchy that is private to each core:

• L1 instruction cache (L1I)
• L1 data cache (L1D) of either a blocking or a non-blocking design
• fully-associative L1 instruction and data TLBs
• optional unified direct-mapped L2 TLB
• hardware page table walker

2 Although Rocket Chip can generate multi-core instances, this lab will feature only single-tile instances.

CS 152 Lab 2 3

Rocket

L1I

PTW

TileBus

L1D

RocketTile

Rocket

L1I

PTW

TileBus

L1D

RocketTile

SystemBus

MemoryBus

FrontBus

Debug
Unit

ControlBus

PLIC CLINTBootROM

JTAG

AXI to
TL

AXI
Master

L2
Bank

L2
Bank

TL to AXI

PeripheryBus

TL to AXI

AXI
Mem

AXI
Slave

Other
Device

Figure 2: A generic Rocket Chip instance

SoC instances can optionally be configured with a unified, inclusive, multi-banked L2 cache
as a last-level cache shared between tiles. If an L2 cache is not present, an L2 broadcast
hub is instantiated in its place to maintain coherence between the L1 caches. Each of
these structures exposes various parameters such as capacity, associativity, replacement
policy, and cache line size, which are set through a Scala-based configuration system at
elaboration time.

2.2.3 Outer Memory System

The L2 coherence agent (either the L2 cache or broadcast hub) makes requests to an
outer memory system through a AXI4 master port. This top-level port would typically
interface with a DRAM controller, but since an actual DRAM controller implementation
is not openly available, we instead attach a model that simulates the functional and timing
behaviors of a DDR3 memory system. The default SoC configuration presents a single
memory channel, but the system can be configured to use multiple channels for greater
bandwidth.

CS 152 Lab 2 4

3 Directed Portion (30%)

3.1 Terminology and Conventions

Throughout this course, the term host refers to the machine on which the simulation runs,
while target refers to the machine being simulated. For this lab, an instructional server
will act as the host, and the RISC-V processors will be the target machines.

Unix shell commands to be run on the host are prefixed with the prompt “eecs$”.

3.2 Setup

This lab is setup to run on either the instructional servers or a non-MacOS-based Linux
OS. Use the corresponding setup instructions based on the machine/setup you are running
on. The default setup is to ssh into an instructional server with the instruc-
tional computing account provided to you.

3.2.1 Instructional Servers

The lab infrastruture has been set up to run on the eda{1..12}.eecs.berkeley.edu
machines (eda-1.eecs, eda-2.eecs, etc.).

First, create a 20GB /home/tmp/$USER folder that is globally accessible from any eda-*
machine. Navigate to the following link: Link. Click on the More... button to see
an option to Make /home/tmp/$USER Directory, click on that button and continue any
prompts/instructions.

Next, if you are running on a new eda-* machine you need to reinstall conda. Otherwise,
you can re-use the existing installation.

eecs$ # skip this if running on the same eda machine as lab1
eecs$ # install conda
eecs$ wget \

https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh
eecs$ bash Miniforge3-Linux-x86_64.sh # yes at all the prompts
eecs$ # exit terminal (if ssh’ed in, exit the ssh session - re-log in)
eecs$ # re-enter terminal
eecs$ conda install -n base conda-lock

Next, remove the old lab repository, clone the new lab materials into the workspace, and
initialize the submodules.

It is highly recommended to use a new git clone of the Chipyard directory that is! →
separate from Lab 1. The following instructions assume that a new Chipyard directory
specifically for this lab is created.

eecs$ cd /home/tmp/${USER}
eecs$ rm -rf OLD_LAB1_MATERIALS # save tmp space (replace the name here with the lab1 directory)
eecs$ git clone https://github.com/ucb-bar/chipyard-cs152-sp23.git cs152-lab2-sp23
eecs$ cd cs152-lab2-sp23
eecs$ git checkout cs152-lab2-sp23
eecs$./build-setup.sh

CS 152 Lab 2 5

https://acropolis.cs.berkeley.edu/~account/webacct/cas/index.cgi

3.2.2 Non-MacOS-Linux OS

If you want to avoid the eda machines, you can optionally try to setup the lab on a non-
MacOS-Linux machine (or VM). However, the default setup is the one using the
eda machines.

eecs$ # on a linux machine/os
eecs$ # install conda
eecs$ wget \

https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh
eecs$ bash Miniforge3-Linux-x86_64.sh # yes at all the prompts
eecs$ # exit terminal
eecs$ conda install -n base conda-lock
eecs$ git clone https://github.com/ucb-bar/chipyard-cs152-sp23.git cs152-lab2-sp23
eecs$ cd cs152-lab2-sp23
eecs$ git checkout cs152-lab2-sp23
eecs$./build-setup-non-instr.sh riscv-tools

3.2.3 Post-Setup

After setting up the repository, you must setup the Chipyard environment in every ter-
minal that is opened.

eecs$ cd cs152-lab2-sp23
eecs$ source env.sh

The source env.sh command should be run in every new terminal that is opened. If it! →
doesn’t exist, then you should verify that the setup instructions were successful.

The remainder of this lab will use ${LAB2ROOT} to denote the path of the lab2 working
tree. This should be set for you in the env.sh file that you source (in addition to the
SIMDIR env. variable used later). Its directory structure is outlined below:

${LAB2ROOT}

lab/

directed/ Source code for Lab 2 directed portion

open1/ Source code and tools for Problem 4.1

open2/ Source code and tools for Problem 4.2

open3/ Source code and tools for Problem 4.3

generators/ Library of RTL generators

chipyard/ SoC configurations

rocket-chip/ Rocket Chip generator

sifive-cache/ Open-source inclusive L2 cache from SiFive

CS 152 Lab 2 6

sims/

verilator/ Verilator simulation directory

generated-src/ Generated Verilog after Chisel elaboration

output/ Simulation logs and traces

3.2.4 (Optional) Using Git to backup the lab

If you would like to transfer the lab between computers or have a backup you can use a pri-
vate Git repository to store lab contents. First, you can follow Create A Repo to create a
repo and Change Visibility to change the visibility to private. Once completed, your repos-
itory should have a URL like the following: https://github.com/<G_USR>/<REPO>.git
Here is an example set of commands that you can run to store things into a private repo:

eecs$ cd cs152-lab2-sp23
eecs$ # point to your private repo
eecs$ git remote add private https://github.com/<G_USR>/<REPO>.git
eecs$ # add/commit any files you want to backup
eecs$ git add -u
eecs$ git commit -m "Any message here"
eecs$ git push private cs152-lab2-sp23

Then on the other machine/setup you can run the following to use the backup repository:

eecs$ git clone https://github.com/<G_USR>/<REPO>.git
eecs$ # continue work as normal

If the repository is public (not set as private) and is discovered we will appropriately! →
penalize your lab grade. If you have questions on this setup, let the instructors know.

3.3 Matrix Transposition Case Study

The directed portion will lead you through a simple case study of a matrix transposition
kernel with these objectives:

• Illustrate some basic cache optimization techniques
• Conduct a brief design-space exploration of cache configurations using the Rocket

Chip parameterization system
• Familiarize you with the RTL simulation flow

We begin with a naive implementation of matrix transposition in ${LAB2ROOT}/lab/
directed/transpose.c that is derived directly from the mathematical definition. Take
a moment to understand the source code. Note that both the 256×64 input matrix and
64×256 output matrix are stored in row-major order. The matrix elements are 64-bit
integers.

Compile it into a bare-metal binary:

eecs$ export TESTDIR=${LAB2ROOT}/lab/directed
eecs$ cd ${TESTDIR}

CS 152 Lab 2 7

https://docs.github.com/en/get-started/quickstart/create-a-repo
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/managing-repository-settings/setting-repository-visibility

eecs$ make

Next, navigate to the Verilator directory and build the simulator. Notice that the CONFIG
variable selects the top-level SoC design to generate – what exactly this means will be
described in the next section. The Chisel design is elaborated into Verilog RTL, which is
then compiled into a cycle-accurate simulator.

eecs$ cd ${SIMDIR}
eecs$ make CONFIG=CS152RocketConfig -j4

This particular configuration contains a 4 KiB direct-mapped L1 data cache and a 4 KiB! →
direct-mapped L1 instruction cache, both with 64-byte cache lines.

Next, run the naive matrix transposition kernel on the simulator:

eecs$ make CONFIG=CS152RocketConfig run-binary-hex BINARY=${TESTDIR}/transpose.riscv

This will involve a few minutes of waiting, as the entire program takes approximately 2
million target cycles to execute.

The program prints a snapshot of several hardware performance counters in the processor.3

Use this information to answer the following questions:

(3.3.a) How many cycles does the transpose operation take?

(3.3.b) What is the miss rate of the L1 data cache?

(3.3.c) Why does the naive transpose code result in non-ideal cache performance?

(3.3.d) Which memory access in the code incurs the most misses, and why?

3.4 Cache Blocking

Rewrite the transpose code to employ cache blocking (loop tiling) using B×B blocks.
Experiment with a few values of B to determine which factor yields the best performance
for a 256×64 input matrix. To maximize B, you may also find that it is necessary to
apply a simple loop interchange within a block.

(3.4.a) For the given matrix dimensions, what is the optimal blocking factor B?

(3.4.b) What is the performance improvement using cache blocking over the naive code?

(3.4.c) It turns out that the block size B×B which yields the lowest miss rate is much
smaller than what one might expect based solely on the 4 KiB capacity of the L1
data cache. What is the reason for this? (Hint: Consider the access pattern within
a block, particularly how the rows of the rectangular matrices map to cache sets
and which type of cache misses dominate for larger B.)

3 Note that in-flight and recently retired instructions may or may not be reflected when reading the
performance counters.

CS 152 Lab 2 8

You can first run your code in a software ISA simulator to more quickly test for correctness,
before running in Verilator simulation to gather performance data.

eecs$ spike ${TESTDIR}/transpose.riscv

This is normally sufficient for debugging software. However, in the unlikely case that a
bug manifests only in Verilator, a verbose simulation trace4 can be found at ${SIMDIR}/
output/chipyard.TestHarness.CS152RocketConfig/transpose.out.

3.5 Cache Parameters

Navigate to ${LAB2ROOT}/generators/chipyard/src/main/scala/config/CS152Configs.
scala and examine the definition of CS152RocketConfig.

In Rocket Chip, a Config is a Scala class that sets one or more generator parameters to
specific values. Configs are additive, can override each other, and can be composed of
other Configs. CS152RocketConfig is an example of a Config that combines other Configs
through the ++ operator. The constituent Configs are applied from right to left (or from
bottom to top) in the chain, by reverse order of precedence. Thus, a Config appearing
to the left of (or above) another Config overrides any parameters previously set by the
latter. For more information on the Rocket Chip parameter system, read through the
Chipyard documentation.5

In CS152RocketConfig, change the associativity of the L1 data cache to 2 by modifying
WithL1DCacheWays parameter, while also adjusting WithL1DCacheSets to keep the overall
cache size constant. Rebuild the simulator and re-run your blocked matrix transpose
version. Repeat this with 4 and 8 ways.

(3.5.a) How does performance and miss rate change when associativity is increased?

(3.5.b) Explain why higher associativity is or is not beneficial for this particular kernel.

3.6 Multi-level Caches

We will continue our experimentation with the CS152RocketL2Config design, which is
derived from CS152RocketConfig but adds a 64 KiB 8-way inclusive L2 cache. (Remember
to change the L1 configuration back to a 4 KiB direct-mapped cache.)

Modify your transposition code to introduce another level of cache blocking for the L2.
Simulate on CS152RocketL2Config and answer the following:

eecs$ make CONFIG=CS152RocketL2Config run-binary-hex BINARY=${TESTDIR}/transpose.riscv

(3.6.a) Does adding another level of cache blocking improve performance compared to your
previous code from 3.5? Why or why not? (Hint: Consider whether there is any

4 These prints show signals from Rocket’s writeback stage each cycle; refer to line 980 of ${LAB2ROOT}/
generators/rocket-chip/src/main/scala/rocket/RocketCore.scala to identify each field.

5 https://chipyard.readthedocs.io/en/latest/Chipyard-Basics/Configs-Parameters-Mixins.
html

CS 152 Lab 2 9

https://chipyard.readthedocs.io/en/latest/Chipyard-Basics/Configs-Parameters-Mixins.html
https://chipyard.readthedocs.io/en/latest/Chipyard-Basics/Configs-Parameters-Mixins.html

locality left for the L2 cache to exploit.)

CS 152 Lab 2 10

4 Open-ended Portion (70%)

Select one of the following questions per team. The open-ended portion is worth a con-
siderable fraction of the grade for the lab, and the grade depends on how comprehensive
the process to your conclusion is.

4.1 Validation and Reverse Engineering of Memory Hierarchies

In this problem, we will try to infer fundamental parameters of a memory system by
running user code and measuring execution latency. This is useful for a variety of reasons:

• To help guide application optimizations when the underlying microarchitecture is
unknown or undisclosed.

• To validate memory system performance before tape-out. Some of the most in-
sidious bugs in computer system design are performance bugs, since applications
still execute correctly but only more slowly. We would like to catch these bugs be-
fore committing a design to silicon, but without a performance model of the target
machine, they may go undiscovered.

• Using the same principle as above, to help validate simulation models. The common
approach of split timing and functional modeling makes it possible to build highly
complex cache and memory models – but it is very easy to write “correct” yet
fundamentally broken timing models.6

We have provided a mystery Rocket Chip configuration for you to characterize, aptly
named CS152RocketMysteryConfig.

4.1.1 Cache Sizes and Access Latency

We will first run the caches micro-benchmark, which comes from the ccbench suite devel-
oped by Christopher Celio, to determine the cache sizes and access latency at each level
of the cache hierarchy.

caches executes a single-threaded pointer chase on an array of a given size, in which each
4-byte array element yields the index of the next element to access.

start_cycles = get_cycles();
for (uint32_t k = 0; k < g_num_iterations; k++) {

idx = arr_n_ptr[idx];
}
end_cycles = get_cycles();

As the array exceeds the size of a cache, the sharp increase in misses is observable from
the longer time that the benchmark takes to run. To accurately isolate the load latency
of an individual element, both spatial locality and memory prefetching must be defeated.
This involves striding the indices to point to different cache lines and randomly sorting
6 For example, in one FASED bug, a write address was mistakenly being used for a read access to the
tag array of the last-level cache model. While this would cause a real cache to return incorrect data, it
simply manifested as small timing aberration in the model.

CS 152 Lab 2 11

the indices within a virtual page (so TLB locality is still maintained).

We have provided a Makefile to automate running ccbench in simulation and visualizing
the result. First, sweep across a predefined range of array sizes:

eecs$ cd ${LAB2ROOT}/lab/open1
eecs$ make sim -j4
eecs$ make ccbench-sweep -j4

This should take approximately an hour to finish when using a couple of parallel jobs.
Each benchmark run outputs a log statement in the form:

App:[caches],NumThreads:[0],AppSize:[1024],Time:[4.01507],TimeUnits:[Cycles Per
↪→ Iteration],NumIterations:[30000],RunType:[0]

“AppSize” records the array size in terms of 4-byte elements, and “Time” records the aver-
age cycles spent per iteration. Run the following to extract these lines into a consolidated
report file and invoke the plotting script from ccbench:

eecs$ make ccbench-plot

This generates a plot of cycles per iteration versus array size. Open ${LAB2ROOT}/
lab/open1/ccbench/caches/plots/plot-CS152RocketMysteryConfig.pdf and answer
the following:

• L1 D cache size
• L1 D cache latency
• L2 cache size
• L2 cache latency
• DRAM latency

Save the plot for your report.

4.1.2 Other Parameters

Finally, try to empirically deduce some more subtle parameters:

• L1 D cache associativity (or equivalently, cache line size)
• L1 D cache replacement policy
• L1 I cache size
• L1 I cache associativity
• L1 I cache replacement policy
• L1 I TLB reach
• L1 D TLB reach
• L2 TLB reach
• L2 TLB hit latency
• DRAM page policy (open or closed)
• Aggregate DRAM page size (ranks × banks)
• Number of DRAM ranks (you can assume there are 8 banks)

CS 152 Lab 2 12

• DRAM Column Address Strobe latency (CAS)
• DRAM Row Address to Column Address delay (RCD)
• DRAM Row Precharge time (RP)

In ${LAB2ROOT}/lab/open1/test/, two templates are provided to help you begin writing
your own micro-benchmarks:

bmark-p.c : This executes in a “bare-metal” environment with physical addressing. It is
usually the quicker option since bare-metal programs can be loaded directly into the
simulation without the initialization overheads of user mode.

bmark-v.c : This executes in a user-mode environment with virtual addressing. An initial
supervisor program called the proxy kernel (pk) is required to load the user program
and set up paging.

In general, you should avoid accessing arbitrary memory locations that have not
been properly allocated, either statically or dynamically with malloc() or mmap().

For a rudimentary timer, the templates also define a function that returns the value of
the cycle CSR, which counts the number of cycles after reset:

static inline unsigned long rdcycle(void) {
unsigned long cycles;
__asm__ __volatile__ ("rdcycle %0" : "=r" (cycles));
return cycles;

}

printf() and other C stdio.h functions can be used to print results to stdout/stderr.7

Edit the Makefile to add other programs of your own. To build all programs:

eecs$ TESTDIR=${LAB2ROOT}/lab/open1/test
eecs$ cd ${TESTDIR}
eecs$ make

To run the bmark-p.riscv program:

eecs$ SIMDIR=${LAB2ROOT}/sims/verilator
eecs$ cd ${SIMDIR}
eecs$ make CONFIG=CS152RocketMysteryConfig run-binary-hex BINARY="${TESTDIR}/bmark-p.riscv"

To run the bmark-v.riscv program:

eecs$ make CONFIG=CS152RocketMysteryConfig run-pk PAYLOAD="${TESTDIR}/bmark-v.riscv"

Note that the compiled binaries are not interchangeable, since different linker options are! →
applied that are specific to whether virtual memory is enabled.

Feel free to test your code on other known configurations, such as the one used in the
directed portion or any new ones that you define.
7 Formatting of floating-point numbers is supported by newlib, the embedded C library.

CS 152 Lab 2 13

4.1.3 Submission

For the given CS152RocketMysteryConfig instance, report the cache capacities, access
latencies, and block sizes as indicated by the caches benchmark. (Include the plots from
ccbench.)

Then provide your best estimate for as many of the other parameters as possible – aim
for at least five. For each of those parameters, explain how you measured it, referring
to your code as necessary (the code is not counted towards the page limit). If you are
not certain that you can accurately determine enough parameters, still provide your code
and explain what you tried. More credit will be awarded for a measured and analyzed
negative result than an ill-justified guess which might be correct by coincidence. If you
have data or plots to show that your code works on known instances, include them in
your justification.

Feel free reach out to your GSI if you need help understanding ccbench, Rocket Chip, or
anything else regarding this problem.

CS 152 Lab 2 14

4.2 Design Your Own Hardware Prefetcher

Rocket
Core

L1 DCache

L1D Arbiter

Prefetcher

HellaCacheIO L1PrefetcherIO

Figure 3: L1 prefetcher integration

In this problem, we will build a hardware prefetcher
(in either Chisel or C++) in hopes of improving the
performance on various benchmarks.

We will use a Rocket Chip instance that has a 16
KiB 4-way set-associative L1 data cache and 64-
byte cache lines. Unlike the directed portion, this
configuration uses the non-blocking data cache, so
that Rocket can take advantage of hit-under-miss
while a prefetch is being serviced.

4.2.1 Interfaces

Partly for convenience and modularity, the
prefetcher is integrated with the tile as a separate module from the cache itself. It can be
considered another client of the data cache, like the core.

Start by navigating to ${LAB2ROOT}/generators/rocket-chip/src/main/scala/rocket/
L1Prefetcher.scala. This Chisel file contains our generator framework for creating
prefetchers. All prefetcher modules inherit from the L1Prefetcher base class, which
specifies a common set of I/O ports (grouped together in the L1PrefetcherIO bundle).

To observe the stream of memory requests and misses, the prefetcher snoops on the
HellaCacheIO interface between the core and L1 data cache. A curated subset of signals
from the HellaCacheReq bundle is presented to the prefetcher:

Input Signal Description

io.cpu.req.valid Asserted when Rocket’s execute stage sends a request
to the L1D cache

io.cpu.req.bits.addr Virtual address of the access
io.cpu.req.bits.cmd Memory operation type (e.g., 0=load, 1=store, etc.)
io.cpu.req.bits.size Logarithm of access size (e.g., 0=1 byte, 3=8 bytes)
io.cpu.miss Asserted when a cache miss is being reported to

Rocket’s writeback stage (Note: This is delayed by
two cycles after the original request)

The prefetcher has a simplified outgoing interface through which it can inject prefetch
requests into the L1D. This is a decoupled interface that uses ready/valid hand-shaking8

to coordinate the source and sink: Both io.dmem.req.valid and io.dmem.req.ready
must be high during the same cycle to initiate a prefetch.
8 https://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf

CS 152 Lab 2 15

https://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf

Input Signal Description

io.dmem.req.ready Asserted when the L1D can accept a request
io.dmem.nack Asserted when a prefetch request from two cycles ago

is rejected, either because all MHSRs are occupied or
the request is a secondary miss (Note: This could be
used to replay a request or throttle the prefetcher)

Output Signal Description

io.dmem.req.valid Indicates that the request is valid
io.dmem.req.bits.addr Virtual address to prefetch (Note: This must be

aligned to an 8-byte boundary)
io.dmem.req.bits.write Indicates intent to write

The single port to the L1D is arbitrated between the core, prefetcher, and the page table
walker, with the prefetcher being given the lowest priority so as to avoid blocking actual
memory requests. However, for more aggressive prefetching schemes, it may be desirable
to implement some form of throttling to ensure that prefetches do not excessively occupy
the MSHRs (miss status handling registers). For example, prefetches could be rate-limited
based on a fixed interval or a feedback loop that adapts to miss rate.

For reference, the ExampleL1Prefetcher module is provided as a demonstration on how
to use the L1PrefetcherIO interface described above. This is a naive implementation
of the one-block prefetch-on-miss scheme from lecture, but its simplistic design actually
turns out to be quite ineffectual, causing a moderate performance degradation more often
than it helps. Hopefully yours is a superior solution!

Once you understand how the interfaces work, implement your own hardware prefetcher! →
within the empty CustomL1Prefetcher module provided in L1Prefetcher.scala (search
for a TODO comment).

4.2.2 C++ Modeling

As an alternative to writing Chisel, you also have the option of implementing your
prefetcher in C++ as a software model that is co-simulated with Rocket Chip. This
method uses SystemVerilog DPI (Direct Programming Interface) to enable a Verilog wrap-
per module to call C++ functions.

Start by navigating to ${LAB2ROOT}/generators/rocket-chip/src/main/resources/
csrc/L1Prefetcher.cc. This C++ file contains two functions to work with:

CS 152 Lab 2 16

Function Description

prefetcher_init() This is called at the beginning of simulation and can be
used to initialize global state.

prefetcher_tick() This is called for each clock cycle and is where the bulk
of your prefetcher logic will reside. The function signature
matches the I/O ports described above. Values for output
signals (dmem_req_*) are assigned by dereferencing the ar-
gument pointers. Read the important note below about
output signal timing.

Treat assigning to *dmem_req_valid, *dmem_addr, and *dmem_req_write as if the values! →
are being latched by registers, and avoid combinationally coupling them with dmem_req_ready.
If, for example, dmem_req_valid is asserted only when dmem_req_ready is true, the out-
puts will be improperly delayed by one cycle relative to dmem_req_ready, which will cause
the prefetch request to be ignored by the cache.

4.2.3 Building

To use your custom hardware prefetcher, first modify the WithL1Prefetcher Config de-
fined in ${LAB2ROOT}/generators/chipyard/src/main/scala/config/CS152Configs.
scala. Replace the default ExampleL1Prefetcher instantiation with the appropriate
module, either CustomL1Prefetcher (Chisel) or ModelL1Prefetcher (C++), like so:

class WithL1Prefetcher extends Config((site, here, up) => {
case BuildL1Prefetcher =>

Some((p: Parameters) => Module(new CustomL1Prefetcher()(p)))
})

A specific top-level configuration for this problem (CS152RocketPrefetchConfig) has
already been prepared for you, which includes the WithL1Prefetcher Config.

To build the simulator:

eecs$ SIMDIR=${LAB2ROOT}/sims/verilator
eecs$ cd ${SIMDIR}
eecs$ make CONFIG=CS152RocketPrefetchConfig -j4

4.2.4 Simulating

First see how your prefetcher performs on the matrix transposition kernel from the directed
portion. You may choose to use the naive code or your L1 cache-blocked version.

eecs$ cd ${SIMDIR}
eecs$ make CONFIG=CS152RocketPrefetchConfig run-binary-hex BINARY="${LAB2ROOT}/lab/

↪→ directed/transpose.riscv"

9 You can run the benchmarks in parallel by adding the -j N flag to the make command, but refrain
from spawning an excessive number of jobs so as to be fair to other users. N = 4 is probably acceptable.

CS 152 Lab 2 17

Next test your prefetcher on the suite of benchmarks from Lab 1.9 These also print a
snapshot of the hardware performance counters – note that L1D misses from regular and
prefetch requests are counted separately.

eecs$ make CONFIG=CS152RocketPrefetchConfig run-bmark-tests

Lastly, as an example of a more complex application, we have also included the Graph
Algorithm Performance Benchmark Suite (GAPBS) [4], which consists of portable, high-
performance implementations for six fundamental graph algorithms developed by Scott
Beamer. Specifically, our focus is on the direction-optimizing variant of Breadth-First
Search (BFS). Smaller inputs (Kronecker graphs with 210 vertices) will be used here,
as the reference inputs such as real social network graphs are too intensive in memory
requirements and simulation time.

eecs$ cd ${LAB2ROOT}/lab/open2
eecs$ make
eecs$ cd ${SIMDIR}
eecs$ make CONFIG=CS152RocketPrefetchConfig run-bfs

As in the directed portion, the simulation traces can be found at ${SIMDIR}/output/
chipyard.TestHarness.CS152RocketPrefetchConfig/*.out based on benchmark name.

4.2.5 Debugging

To dump waveforms from simulation, run the debug versions of the make targets:

eecs$ make CONFIG=CS152RocketPrefetchConfig run-binary-debug-hex BINARY="
↪→ ${LAB2ROOT}/lab/directed/transpose.riscv"

eecs$ make CONFIG=CS152RocketPrefetchConfig run-bmark-tests-debug
eecs$ make CONFIG=CS152RocketPrefetchConfig run-bfs-debug

Waveform dumps (which can become quite large) are written to ${SIMDIR}/output/
chipyard.TestHarness.CS152RocketPrefetchConfig/*.\{vpd,vcd\}. The prefetcher
instance is found under TOP.TestHarness.chiptop.system.tile_prci_domain.tile_
reset_domain.tile.prefetchOpt in the module hierarchy. Waveforms can be viewed
on the instructional servers with the DVE application (requires X11 forwarding over ssh
or X2Go) or with the open-source GTKWave application.

Waveform dumps often take multiple GB’s or more of disk space (we expect that run-! →
ning the above commands will result in 50GB of extra space for the lab) If running on
the eda-* machines in the 20GB /home/tmp/$USER folder, you might run out of space.
To selectively run individual tests with debug dumps you can run make CONFIG=...
run-binary-debug-hex BINARY=path/to/bin. For example, for the benchmark tests you
can find the individual binaries run at $RISCV/riscv64-unknown-elf/share/riscv-tests/
benchmarks. Remember, once you’ve run something you should remove it (look for the
output files in output/...).

CS 152 Lab 2 18

4.2.6 Submission

Report performance metrics and cache statistics from running the various benchmarks
with the prefetcher enabled. Compare these to results gathered from running on the
baseline CS152RocketNoPrefetchConfig system, which omits the prefetcher but is oth-
erwise identical. Include the source code for your implementation in an appendix (not
counted towards the page limit).

In your report, describe your design and any implementation challenges in detail. Here
are some suggestions to consider in your evaluation:

• What memory access patterns or instances of locality were you targeting?

• Explain your design rationale and the various approaches that you considered. What
worked and what did not?

• Analyze the impact on miss rate and CPI. Were any results surprising?

• Optionally, see if you can characterize your prefetcher on the set of metrics intro-
duced in Lecture 7:

accuracy = useful prefetches / total prefetches

coverage = total prefetches / total unique accesses

timeliness = number of prefetches arriving on time / total prefetches

It may be useful to instrument your prefetcher with Chisel printfs10 or C++
std::cout statements to log certain events and parse the trace with a script.

A negative result is perfectly acceptable so long as you reason about why the outcomes
differed from your expectations. (Designing an effective prefetcher is a non-trivial task!
This exercise is partly meant to underscore the challenges of prototyping an idea.)

Feel free reach out to your GSI if you need help understanding Chisel, Rocket Chip, or
anything else regarding this problem.

10 https://github.com/chipsalliance/chisel3/wiki/Printing-in-Chisel

CS 152 Lab 2 19

https://github.com/chipsalliance/chisel3/wiki/Printing-in-Chisel

4.3 Design Your Own Replacement Policy and Victim Cache

For this problem, we would like to investigate whether a different cache replacement
policy, combined with a victim cache, would improve the performance of five selected
SPEC benchmarks compared to random replacement.

Assume you are designing for a 16 KiB 4-way set-associative L1 data cache, where the
backside is connected to DRAM. You will model your cache modifications in spike, a
functional ISA simulator for RISC-V that has been extended with a basic cache model.
The simulator feeds memory addresses through a simulated cache (with a given size,
associativity, and block size) to compute the number of accesses, hits, and misses. While
spike does not model microarchitectural timings and is therefore not cycle-accurate, its
speed lets us execute much longer programs ordinarily infeasible in RTL simulation.

The only constraints are that you can only add less than 211 bits of state (in either flip-! →
flops or SRAM) to support your new replacement policy and less than 213 bits for the
victim cache. Assume that physical addresses are 56 bits wide.

4.3.1 SPEC CPU2006

The SPEC CPU2006 package is a former11 industry-standard benchmark suite for evalu-
ating general-purpose processors, memory systems, and compilers [5]. You will be running
five benchmarks from SPECint (integer) and SPECfp (floating-point) on smaller test in-
puts.12 Brief descriptions of them, taken from the SPEC documentation, follow:

• 401.bzip2 is based on bzip2 version 1.0.3, modified to perform compression and
decompression in memory instead of file I/O.

• 429.mcf is derived from MCF, a program used for single-depot vehicle scheduling in
public mass transportation. It features a specialized version of the simplex algorithm
for network flow problems.

• 450.soplex is based on SoPlex 1.2.1. It solves a linear program using a simplex
algorithm and sparse linear algebra.

• 458.sjeng is based on Sjeng 11.2, a program that plays chess and several chess
variants. It attempts to find the best move via a combination of alpha-beta or
priority proof number tree searches, advanced move ordering, positional evaluation
and heuristic forward pruning.

• 470.lbm implements the “Lattice Boltzmann Method” to simulate incompressible
fluids in 3D.

11 It has since been replaced by SPEC CPU2017; however, we still opt to use SPEC CPU2006 for being
much simpler to cross-compile for RISC-V.

12 Each benchmark with reference inputs generally require a day to run on a typical Rocket Chip instance
mapped to an FPGA. In this case, we are more interested in stressing the caches than reporting valid
benchmark scores, so minor adjustments have been made to limit simulation time.

CS 152 Lab 2 20

To build spike and simulate all benchmarks using its cache model:

eecs$ cd ${LAB2ROOT}/lab/open3
eecs$ make spike -j4
eecs$ make run

The benchmarks should take around a total of 15 minutes to execute when run serially.
For quicker testing, individual programs can be re-run with make run-X, where X is the
name of the benchmark without the numerical prefix (e.g., run-bzip2, run-mcf, etc.).

The simulation output is recorded in ${LAB2ROOT}/lab/open3/CPU2006/build.riscv/*.
out, and the compiled SPEC binaries can also be found in that same directory. Removing
these *.out files forces make to re-run the simulations later:

eecs$ make clean-run

A full rebuild can be triggered by purging all generated files:

eecs$ make clean

4.3.2 Modifying the Cache Simulator

Navigate to ${LAB2ROOT}/lab/open3/riscv-isa-sim/riscv/cachesim.cc, where you
will find the definition for the cache_sim_t C++ class instantiated in spike. After
taking some time to understand how the current cache model operates, modify the
cache_sim_t::victimize() function to implement your custom replacement policy.

To rebuild the simulator without running any benchmarks:

eecs$ cd ${LAB2ROOT}/lab/open3
eecs$ make spike

4.3.3 Adding a Victim Cache

Generally, the associativity of a cache (number of ways) presents a trade-off between
access time and conflict misses. In order to reduce conflict misses without affecting access
times, N. Jouppi proposed victim caching [6] in which a small fully-associative secondary
cache, called a victim cache, is added to a direct-mapped L1 cache to hold recently evicted
cache lines.

We are interested in whether a victim cache would be worthwhile to implement even for
a set-associative cache with a moderate number of ways. To get a sense of the scope for
potential improvement, you may want to first augment cache_sim_t to track the number
of conflict misses. Then implement your own victim caching scheme inside the cache
model. You will likely need to modify the cache_sim_t::access() function, which calls
cache_sim_t::victimize().

CS 152 Lab 2 21

4.3.4 Submission

In your report, describe how your cache replacement policy and victim cache work, using
visual aids (e.g., block diagrams) where appropriate to illustrate their operation. Include
a diff of your modifications to the cache model in an appendix (not counted towards the
page limit).

Report cache statistics from running the SPEC benchmark suite on your modified cache,
and compare them to the original cache. Try to explain your results as best you can.
Here are some suggestions to consider in your analysis on the effectiveness of your design:

• Based on the number of memory accesses, misses, and instructions retired, what
effect on AMAT and CPI do you think your new cache would have?

• Estimate the cost in resources if you were to implement your design in hardware.
How much additional state would be required in terms of bits?

• For the given set of benchmarks, how problematic are conflict misses compared to
compulsory or capacity misses? Would the addition of a victim cache be justifiable?

• What is the minimum number of victim cache entries that you would recommend?
Are there diminishing returns to increasing victim cache size?

• Program behavior can sometimes be characterized by distinct execution “phases”.
Does the miss rate vary over time within a benchmark?

Feel free to reach out to your GSI if you need help understanding the ISA simulator, the
cache model, or anything else regarding this problem.

5 Feedback Portion

In order to improve the labs for the next offering of this course, we would like your
feedback. Please append your feedback to your individual report for the directed portion.

• How many hours did the directed portion take you?
• How many hours did you spend on the open-ended portion?
• Was this lab boring?
• What did you learn?
• Is there anything that you would change?

Feel free to write as much or as little as you prefer (a point will be deducted only if left
completely empty).

5.1 Team Feedback

In addition to feedback on the lab itself, please answer a few questions about your team:

• In a few sentences, describe your contributions to the project.
• Describe the contribution of each of your team members.
• Do you think that every member of the team contributed fairly? If not, why?

CS 152 Lab 2 22

6 Acknowledgments

This lab was heavily inspired by the previous set of CS 152 labs developed by Henry
Cook, Yunsup Lee, and Andrew Waterman, which targeted functional simulators such as
Simics and Spike. More recent iterations of this lab, developed by Donggyu Kim, David
Biancolin, and Albert Magyar, used FireSim to run FPGA-based simulations on Amazon
EC2 F1.

References

[1] K. Asanović, R. Aviúzienis, J. Bachrach, et al., “The Rocket Chip generator,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr.
2016.

[2] A. Waterman and K. Asanović, Eds., The RISC-V instruction set manual, volume I:
User-level ISA, Version 20191213, RISC-V Foundation, Dec. 2019. [Online]. Available:
https://riscv.org/specifications/.

[3] A. Waterman and K. Asanović, Eds., The RISC-V instruction set manual, volume II:
Privileged architecture, Version 20190608-Priv-MSU-Ratified, RISC-V Foundation,
Jun. 2019. [Online]. Available: https://riscv.org/specifications/privileged-
isa/.

[4] S. Beamer, K. Asanović, and D. Patterson, The GAP benchmark suite, 2015. arXiv:
1508.03619 [cs.DC]. [Online]. Available: http://gap.cs.berkeley.edu/benchmark.
html.

[5] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH Computer Ar-
chitecture News, vol. 34, no. 4, 1–17, Sep. 2006. doi: 10.1145/1186736.1186737.

[6] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers,” SIGARCH Computer Architecture News,
vol. 18, no. 2SI, 364–373, May 1990. doi: 10.1145/325096.325162.

CS 152 Lab 2 23

https://riscv.org/specifications/
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/privileged-isa/
https://arxiv.org/abs/1508.03619
http://gap.cs.berkeley.edu/benchmark.html
http://gap.cs.berkeley.edu/benchmark.html
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/325096.325162

	Introduction and Goals
	Graded Items

	Background
	Chipyard
	Rocket Chip
	Rocket Microarchitecture
	Cache Hierarchy
	Outer Memory System

	Directed Portion (30%)
	Terminology and Conventions
	Setup
	Instructional Servers
	Non-MacOS-Linux OS
	Post-Setup
	(Optional) Using Git to backup the lab

	Matrix Transposition Case Study
	Cache Blocking
	Cache Parameters
	Multi-level Caches

	Open-ended Portion (70%)
	Validation and Reverse Engineering of Memory Hierarchies
	Cache Sizes and Access Latency
	Other Parameters
	Submission

	Design Your Own Hardware Prefetcher
	Interfaces
	C++ Modeling
	Building
	Simulating
	Debugging
	Submission

	Design Your Own Replacement Policy and Victim Cache
	SPEC CPU2006
	Modifying the Cache Simulator
	Adding a Victim Cache
	Submission

	Feedback Portion
	Team Feedback

	Acknowledgments

