
CS 152 Laboratory Exercise 4

Professor: Sophia Shao

Department of Electrical Engineering & Computer Sciences

University of California, Berkeley

April 3rd, 2023

Revision History

Revision Date Author(s) Description

1.0 2022-04-08 hngenc Initial release

1.0 2022-04-01 Prashanth

Ganesh

Sp23 update

1 Introduction and Goals

In this lab, you will write RISC-V vector assembly code to gain a better understanding of
how data-parallel code maps to vector-style processors, and to practice optimizing vector
code for a given implementation.

While students are encouraged to discuss solutions to the lab assignments with each other,
you must complete the directed portion of the lab yourself and submit your own work for
these problems.

For this lab, the open-ended portion is optional and ungraded.

1.1 Graded Items

All code and reports are to be submitted through Gradescope. Please label each section
of the results clearly. All directed items need to be turned in for evaluation.

� (Directed) Problem 3.4: cmplxmult code
� (Directed) Problem 3.5: dgemv code
� (Directed) Problem 3.6: dgemm code
� (Directed) Problem 3.7: imax code
� (Directed) Problem 5: Feedback



2 Background

The RISC-V vector ISA programming model is best explained by contrast with other,
popular data-parallel programming models. As a running example, we use a conditional-
ized SAXPY kernel, CSAXPY. Listings 1 and 2 show CSAXPY expressed in C as both a
vectorizable loop and as a SPMD (single-program multiple-data) kernel. CSAXPY takes
as input an array of boolean conditions, a scalar a, and vectors x and y; it computes
y += ax for the elements for which the condition is true.

Listing 1: CSAXPY vectorizable loop

1 void csaxpy(size_t n, bool cond[], float a, float x[], float y[])

2 {

3 for (size_t i = 0; i < n; i++)

4 if (cond[i])

5 y[i] = (a * x[i]) + y[i];

6 }

Listing 2: CSAXPY SPMD kernel with 1-D thread launch

1 csaxpy_spmd<<<((n-1)/32+1)*32>>>;

2

3 void csaxpy_spmd(size_t n, bool cond[], float a, float x[], float y[])

4 {

5 if (tid.x < n)

6 if (cond[tid.x])

7 y[tid.x] = (a * x[tid.x]) + y[tid.x];

8 }

2.1 Packed-SIMD Programming Model

Listing 3 shows CSAXPY mapped to a hypothetical packed-SIMD architecture, similar
to Intel's SSE and AVX extensions. This SIMD architecture has 128-bit registers, each
partitioned into four 32-bit �elds. As with other packed-SIMD machines, ours cannot mix
scalar and vector operands, so the code begins by broadcasting (or �splatting�) copies of
a to each �eld of a SIMD register.

To map a long vector computation to this architecture, the compiler generates a stripmine

loop, each iteration of which processes one four-element vector. In this example, the
stripmine loop consists of a load from the conditions vector (line 6), which in turn is
used to set a predicate register (line 7). The next four instructions (lines 8�11), which
correspond to the body of the if statement in Listing 1, are masked by the predicate
register.1 Finally, the address registers are incremented by the SIMD width (lines 13�14),

1We treat packed-SIMD architectures generously by assuming the support of full predication. This
feature was quite uncommon. Intel AVX, for example, only introduced predication with the recent
AVX-512 extension in 2016, �rst in a subset of Xeon models and only later available in mainstream
products starting with Cannon Lake.
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Listing 3: CSAXPY mapped to packed SIMD assembly with predication
In all pseudo-assembly examples presented in this section, register a0 holds variable n, a1
holds pointer cond, fa0 holds scalar a, a2 holds pointer x, and a3 holds pointer y.

1 csaxpy_simd:

2 slli a0, a0, 2

3 add a0, a0, a3

4 vsplat4 vv0, fa0

5 stripmine_loop:

6 vlb4 vv1, (a1)

7 vcmpez4 vp0, vv1

8 !vp0 vlw4 vv1, (a2)

9 !vp0 vlw4 vv2, (a3)

10 !vp0 vfmadd4 vv1, vv0, vv1, vv2

11 !vp0 vsw4 vv1, (a3)

12 addi a1, a1, 4

13 addi a2, a2, 16

14 addi a3, a3, 16

15 bltu a2, a0, stripmine_loop

16 # handle fringe cases when (n % 4) != 0

17 # ...

18 ret

and the stripmine loop is repeated until the computation is �nished (line 15)�almost.

Since the stripmine loop handles four elements at a time, extra code is needed to handle
up to three fringe elements at the end. For brevity, we omitted this code; in this case,
it su�ces to duplicate the loop body, predicating all of the instructions on whether their
index is less than n.

Listing 4 shows CSAXPY mapped to a similar packed-SIMD architecture without pred-
ication support. The compare instruction writes the mask to a SIMD register instead
(line 7). The bulk of the computation is done regardless of the condition (lines 8�10),
and vblend4 selects the new value or the old value depending on the mask (line 11). The
fringe case must be handled in scalar code due to the lack of predication.

The most important drawback to packed-SIMD architectures lurks in the assembly code:
The SIMD width is expressly encoded in the instruction opcodes and address generation
code. When the architects of such an ISA wish to increase performance by widening the
vectors, they must add a new set of instructions to process these vectors. This consumes
substantial opcode space: for example, Intel's newest AVX instructions are as long as 11
bytes. Worse, application code cannot automatically leverage the widened vectors without
being recompiled to use the new instructions. Conversely, code compiled for wider SIMD
registers fails to execute on older machines with narrower ones.

2.2 SIMT Programming Model

Listing 5 shows the same code mapped to a hypothetical SIMT architecture, akin to
an NVIDIA GPU. The SIMT architecture exposes the data-parallel execution resources
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Listing 4: CSAXPY mapped to packed SIMD assembly without predication
The vblend4 d,m,s,t instruction implements a select function: d = m ? s : t

1 csaxpy_simd:

2 slli a0, a0, 2

3 add a0, a0, a3

4 vsplat4 vv0, fa0

5 stripmine_loop:

6 vlb4 vv1, (a1)

7 vcmpez4 vv3, vv1

8 vlw4 vv1, (a2)

9 vlw4 vv2, (a3)

10 vfmadd4 vv1, vv0, vv1, vv2

11 vblend4 vv1, vv3, vv1, vv2

12 vsw4 vv1, (a3)

13 addi a1, a1, 4

14 addi a2, a2, 16

15 addi a3, a3, 16

16 bltu a2, a0, stripmine_loop

17 # handle fringe cases when (n % 4) != 0

18 # ...

19 ret

as multiple threads of execution; each thread executes one element of the vector. The
microarchitecture fetches an instruction once but then executes it on many threads si-
multaneously using parallel datapaths; therefore, a scalar instruction shown in the code
executes like a vector instruction.

One ine�ciency of this approach is immediately evident: Since the number of launched
threads must be a multiple of the warp size (32 for NVIDIA GPUs), the �rst action taken
by each thread is to determine whether it is within bounds (lines 2�3). Another ine�ciency
results from the duplication of scalar computation: Despite the unit-stride access pattern,
each thread explicitly computes its own addresses. (The SIMD architecture, in contrast,
amortizes this work over the SIMD width.) Memory coalescing logic is then needed to
recover the original unit-stride access pattern from the individual memory requests issued
by each thread, which otherwise must be treated as a scatter/gather. Moreover, massive
replication of scalar operands reduces the e�ective utilization of register �le resources:
Each thread has its own copy of the three array base addresses and the scalar a. This
represents a threefold increase over the fundamental architectural state.2

2.3 Traditional Vector Programming Model

Packed SIMD and SIMT architectures have a disjoint set of drawbacks: The main lim-
itation of the former is the static encoding of the vector length, whereas the primary
drawback of the latter is the lack of scalar processing. One can imagine an architecture

2More recent GPU architectures, such as the RDNA ISA from AMD, have incorporated support for
scalar values and vector memory operations.
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Listing 5: CSAXPY mapped to SIMT assembly

1 csaxpy_simt:

2 mv t0, tid

3 bgeu t0, a0, skip

4 add t1, a1, t0

5 lbu t1, (t1)

6 beqz t1, skip

7 slli t0, t0, 2

8 add a2, a2, t0

9 add a3, a3, t0

10 flw ft0, (a2)

11 flw ft1, (a3)

12 fmadd.s ft0, fa0, ft0, ft1

13 fsw ft0, (a3)

14 skip:

15 stop

that has the scalar support of the former and the dynamism of the latter. In fact, it has
existed for over 40 years, in the form of the traditional vector machine, embodied by the
Cray-1.[1]

The key feature of this architecture is the vector length register (VLR), which represents
the number of vector elements that will be processed by each vector instruction, up to the
hardware vector length (HVL). Software manipulates the VLR by requesting a certain
application vector length (AVL) with the vsetvl instruction; in response, the vector unit
sets the active vector lenth to the shorter of the AVL and the HVL.

As with packed SIMD architectures, a stripmine loop iterates until the application vector
has been completely processed. But, as Listing 6 shows, the di�erence lies in the ad-
justment of the VLR at the head of every loop iteration (line 3). Most importantly, the
software is agnostic to the underlying hardware vector length: The same code executes
correctly and with maximal e�ciency on machines with any HVL. Secondly, no fringe
code is required at all: On the �nal trip through the loop, the VLR is simply set to the
exact remainder.

The advantages of traditional vector architectures over the SIMT approach are owed to
the coupled scalar control processor. The scalar register �le holds only one copy of the
array pointers and the scalar a. The address computation instructions execute only once
per stripmine loop iteration, rather than once per element, e�ectively amortizing their
cost by a factor of the HVL.

2.4 RISC-V Vector Programming Model

The RISC-V �V� vector extension (RVV) resembles a traditional vector ISA, with some
key distinctions. In particular, the organization of the vector register �le is dynamically
con�gurable through the vector type register (vtype), which consists of two �elds: SEW
and LMUL. These dictate how the vector state is conceptually partitioned along two
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Listing 6: CSAXPY mapped to traditional vector assembly

1 csaxpy_tvec:

2 stripmine_loop:

3 vsetvl t0, a0

4 vlb vv0, (a1)

5 vcmpez vp0, vv0

6 !vp0 vlw vv0, (a2)

7 !vp0 vlw vv1, (a3)

8 !vp0 vfmadd.s vv0, vv0, fa0, vv1

9 !vp0 vsw vv0, (a3)

10 add a1, a1, t0

11 slli t1, t0, 2

12 add a2, a2, t1

13 add a3, a3, t1

14 sub a0, a0, t0

15 bnez a0, stripmine_loop

16 ret

orthogonal dimensions.

The standard element width (SEW) sets the default width of each vector element in bits.
A narrower SEW enables elements to be more densely packed into the available storage,
increasing the maximum vector length. SEW also determines the operation widths of
polymorphic vector instructions, which allow reusing the same instruction to support a
variety of data widths (e.g., both single-precision and double-precision �oating-point),
thereby conserving valuable opcode space.

The length multiplier (LMUL) is an integer power of 2 (from 1 to 8) that controls how
many consecutive vector registers are grouped together to form longer vectors. With
LMUL=2, vector registers vn and vn + 1 are operated on as one vector with twice the
maximum vector length. Instructions must use vector register speci�ers evenly divisible
by LMUL; attempts to invalid speci�ers raise an illegal instruction exception. LMUL
serves to increase e�ciency through longer vectors when fewer architectural registers are
needed, as well as to accommodate mixed-width operations (as a mechanism to maintain
identical vector lengths among vectors of di�erent datatype widths).

Listing 7 shows CSAPY mapped to RVV 0.10. The vsetvli instruction enables both the
vector length and vtype to be con�gured in one step. SEW is initially set to 8 bits (line
3) to load the boolean values from cond. The second vsetvli instruction (line 6) widens
SEW to 32 for single-precision operations; the special use of x0 for the requested vector
length has the e�ect of retaining the current vector length.

There are no separate vector predicate registers in RVV, which reduces the minimum
architectural state. In the base V extension, predicated instructions always use v0 as the
source of the vector mask, while other vector registers can be used to temporarily hold
mask values computed with vector logical and comparison instructions. Annotating a
maskable instruction with v0.t (line 9) causes the operation to be executed conditionally
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Listing 7: CSAXPY mapped to RISC-V V assembly

1 csaxpy_rvv:

2 stripmine_loop:

3 vsetvli t0, a0, e8, m2, ta, ma # set VL; configure SEW=8 LMUL=2

4 vle8.v v8, (a1) # load cond[i]

5 vmsne.vi v0, v8, 0 # set mask if cond[i] != 0

6 vsetvli x0, x0, e32, m8, ta, mu # configure SEW=32 LMUL=8; retain VL

7 vle32.v v8, (a2) # load x[i]

8 vle32.v v16, (a3) # load y[i]

9 vfmacc.vf v16, fa0, v8, v0.t # y[i] = (a * x[i]) + y[i] if cond[i] != 0

10 vse32.v v16, (a3) # store y[i]

11 sub a0, a0, t0 # decrement n

12 add a1, a1, t0 # bump pointer cond

13 slli t0, t0, 2 # scale VL to byte offset

14 add a2, a2, t0 # bump pointer x

15 add a3, a3, t0 # bump pointer y

16 bnez a0, stripmine_loop

17 ret

based on the least-signi�cant bit of the mask element in v0.

In the example, note that the vector mask is computed under SEW=8 but consumed
under SEW=32. For the predicate bit of each element to remain in the same positions
under both vtype settings, the SEW/LMUL ratio must be kept constant. (The �Mask
Register Layout� section explains the constraints involved.) Hence, it is necessary to set
LMUL=2 when SEW=8 to match the use of LMUL=8 later.

2.4.1 Speci�cation Versioning

Be sure to use the correct version of the RVV speci�cation for this lab.! →
The V extension has evolved substantially over the past few years, and many aspects may
yet change before standardization. Both this lab and the lecture use the 0.9 draft of the
speci�cation, archived at https://inst.eecs.berkeley.edu/~cs152/sp22/handouts/

sp22/riscv-v-spec-0.10.html.

The latest working draft is available at https://github.com/riscv/riscv-v-spec. Older
iterations of Lab 4 were built on the 0.4 speci�cation, from which the current proposal
diverges radically enough that they should be regarded as two di�erent ISAs.

3 Directed Portion (100%)

This lab focuses on writing programs that target the RISC-V vector ISA. This will involve:

1. Writing vector assembly code for di�erent benchmarks

2. Testing their correctness and estimating performance using the RISC-V ISA simu-
lator, spike
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Although normally just a functional simulator, to create a more interesting lab, spike
has been extended with a rudimentary timing model of a single-issue in-order core with a
standard vector unit. This timing model approximates instruction latencies from data and
structural hazards, multi-cycle functional units, cache misses, and branch mispredictions.

For these simulations, spike is con�gured to model the following hardware parameters,
intended to closely match the default RocketCon�g design from Chipyard.

Vector unit:

� 512-bit hardware vector length (VLEN), 128-bit datapath
� Two vector functional units (VFU0, VFU1)

� Both VFUs contain an integer ALU, an integer multiplier, and �oating-point
FMA units

� VFU0 handles reductions
� VFU1 handles �oating-point conversions and comparisons

� One vector memory unit (VMU)
� 128-bit interface to L1 data cache
� 128 bits/cycle bandwidth for unit-stride memory operations
� 1 element/cycle bandwidth for constant-stride and indexed memory operations
(including vector AMOs)

� In-order issue with �exible vector chaining

Functional units:

� Integer ALU, 1-cycle latency
� Unpipelined scalar integer multiplier (8 bits/cycle) and divider (1 bit/cycle)
� Pipelined vector integer multiplier, 3-cycle latency
� Pipelined scalar and vector �oating-point units

� 4-cycle double-precision FMA latency
� 3-cycle single-precision and half-precision FMA latency
� 2-cycle �oating-point conversion and comparison latency

� Unpipelined vector reduction unit, 1 element/cycle

Memory hierarchy:

� L1 instruction cache: 16 KiB, 4-way, 64 B lines
� Blocking L1 data cache: 16 KiB, 4-way, 64 B lines, 2-cycle latency for scalar loads
� Inclusive L2 cache: 512 KiB, 8-way, 64 B lines, 20-cycle latency
� 75-cycle main memory latency3

Branch prediction:

� 3-cycle branch misprediction penalty
� 28-entry fully-associative BTB
� 512-entry BHT, gshare with 8 bits of global history
� 6-entry RAS

3 Equivalent to Rocket Chip with a 1 GHz mbus frequency and 667 MHz DRAMSim2 frequency
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3.1 Setup

To complete this lab, ssh into an instructional server with the instructional comput-
ing account provided to you. The lab infrastructure has been set up to run on the
eda{1..8}.eecs.berkeley.edu machines (eda-1.eecs, eda-2.eecs, etc.). Unix shell
commands to be run on the host are pre�xed with the prompt �eecs$�.

Once logged in, source the following script to initialize your shell environment so as to be
able to access to the tools for this lab.4 Run it before each session.

eecs$ source ~cs152/sp23/cs152.lab4.bashrc

First, clone the lab materials into an appropriate workspace and initialize the submodules.

eecs$ cd /scratch/$USER

eecs$ git clone ~cs152/sp23/lab4.git

eecs$ cd lab4

eecs$ LAB4ROOT="$(pwd)"

This document henceforth uses ${LAB4ROOT} to denote the path of the lab4 working tree.

3.2 Register Convention

When writing assembly code, strictly adhere to the integer and �oating-point register
conventions set forth by the RISC-V psABI5 (processor-speci�c application binary inter-
face). Inadvertently clobbering registers will cause compatibility issues when linked with
compiled code.

The x registers s0�s11 are callee-saved, which should be preserved across function calls
by saving on the stack and restoring them if used. t0�t6 and a0�a7 can be used as
temporaries. gp and tp are reserved for special purposes in the execution environment
and should be avoided. Similarly for the f registers, fs0�fs11 are callee-saved. ft0�ft11
and fa0�fa7 can be used as temporaries.

Currently, all vector registers v0�v31 are treated as caller-saved.

3.3 Conditional SAXPY (csaxpy)

The full vector code for csaxpy is already provided to you in ${LAB4ROOT}/benchmarks/

vec-csaxpy/vec_csaxpy.S. It is essentially identical to the example described earlier in
Section 2.4. Take a moment to study how it works; although relatively simple, it is a useful
demonstration of some important ISA features such as SEW, LMUL, and predication.

For comparison, the scalar version is also available in ${LAB4ROOT}/benchmarks/csaxpy.

Build and run both benchmarks on spike as follows:

4 This lab requires a di�erent software toolchain that has experimental support for RVV 0.10.
5 https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md
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eecs$ cd ${LAB4ROOT}/benchmarks

eecs$ make csaxpy.riscv.out

eecs$ make vec-csaxpy.riscv.out

Now that you understand the infrastructure, how to run benchmarks, and how to collect
results, you can begin writing your own benchmarks.

3.4 Complex Vector Multiplication (cmplxmult)

cmplxmult multiplies two vectors of single-precision complex values. The psuedocode is
shown in Listing 8.

Listing 8: cmplxmult pseudocode

1 struct Complex {

2 float real;

3 float imag;

4 };

5

6 for (i = 0; i < m; i++) {

7 c[i].real = (a[i].real * b[i].real) - (a[i].imag * b[i].imag);

8 c[i].imag = (a[i].imag * b[i].real) + (a[i].real * b[i].imag);

9 }

Build and run the scalar version provided in ${LAB4ROOT}/benchmarks/cmplxmult/:

eecs$ make cmplxmult.riscv.out

Your task is to vectorize the code. Complete the assembly function in ${LAB4ROOT}/

benchmarks/vec-cmplxmult/vec_cmplxmult.S according to the TODO comments. When
you are ready to test your code, build and run it on the ISA simulator:

eecs$ make vec-cmplxmult.riscv.out

If no errors are reported, you are done!

Refer to Appendix A for debugging tips.! →

3.4.1 Segmented Vector Memory Operations

When working with arrays of structs, you may want to use segmented vector memory
operations to conveniently unpack each �eld into separate (consecutively numbered) vector
registers. These are described in the �Vector Load/Store Segment Instructions� section
of the RVV spec.6

6 Since their implemention can be non-trivial, the segment instructions are currently speci�ed as an
optional extension (Zvlsseg). If absent, the functionality can be emulated using multiple strided vector
memory operations.
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3.4.2 Fused Multiply-Add Operations

Although not necessary, more e�cient code can be written by using fused multiply-add

instructions that issue two vector �oating-point operations for each instruction. These
come in two destructive forms that overwrite one of the vector register operands, either
the addend or the �rst multiplicand.7 All relevant fused varieties are listed in the �Vector
Single-Width Floating-Point Fused Multiply-Add Instructions� section.

3.5 Double-Precision Generalized Matrix-Vector Multiplication (dgemv)

dgemv performs double-precision matrix-vector multiplication y ← Ax + y, where x and
y are vectors and A is an m× n matrix. It is a fundamental kernel part of BLAS (Basic
Linear Algebra Subprograms) Level 2. Since the arithmetic intensity is relatively low
(each element of A is used only once), its performance is typically memory-bound.

The unoptimized pseudocode is shown in Listing 9. The matrix A is stored in row-major

order, i.e., the entries in a row are contiguous in memory.

Listing 9: Unoptimized dgemv pseudocode

1 for (i = 0; i < m; i++) {

2 for (j = 0; j < n; j++) {

3 y[i] += A[i][j] * x[j];

4 }

5 }

Build and run the scalar version provided in ${LAB4ROOT}/benchmarks/dgemv/:

eecs$ make dgemv.riscv.out

Your task is to vectorize the inner loop along the n dimension.8 Complete the assembly
function in ${LAB4ROOT}/benchmarks/vec-dgemv/vec_dgemv.S according to the TODO
comments. When you are ready to test your code, build and run it on the ISA simulator:

eecs$ make vec-dgemv.riscv.out

3.5.1 Reductions and Scalars

Note that the inner product to compute y[i] involves a sum reduction. For long vectors
particularly, reduction operations can be somewhat expensive due to the inter-element
communication required. Thus, the recommended approach is to stripmine the loop to
accumulate the partial sums in parallel, and then reduce the vector at the end of the loop

7As one of the design constraints on the base V extension is to not consume too much 32-bit encoding
space, non-destructive three-operand instructions are not provided.

8Alternatively, the i and j loops could be interchanged, which would permit the vector load of x to be
hoisted out of the inner loop and reused for all rows of A. However, each iteration would necessitate a
reduction operation. If the matrix were instead transposed to column-major order, vectorization along
the m dimension would be simpler as explicit reductions can be entirely avoided while fully reusing each
element of x.
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to yield a single value.

You may �nd the �Vector Single-Width Floating-Point Reduction Instructions� section
of the RVV spec to be useful.9 Note that the vector reduction instructions interact
with scalar values held in vector registers: The scalar result is written to element 0 of
the destination vector register, and the operation also takes an initial scalar input from
element 0 of a second vector operand. Refer to �Floating-Point Scalar Move Instructions�
for transferring a single value between an f register and a vector register.

3.6 Double-Precision Generalized Matrix-Matrix Multiplication (dgemm)

dgemm performs double-precision matrix-matrix multiplication C ← AB+C, where A and
B are both n × n matrices. This is another fundamental kernel for scienti�c computing
and machine learning, part of BLAS Level 3. The unoptimized pseudocode is shown in
Listing 10. All matrices are stored in row-major order.

Listing 10: Unoptimized dgemm pseudocode

1 for (i = 0; i < n; i++) {

2 for (j = 0; j < n; j++) {

3 for (k = 0; k < n; k++) {

4 C[i][j] += A[i][k] * B[k][j];

5 }

6 }

7 }

The optimized scalar version is provided in ${LAB4ROOT}/benchmarks/dgemm/. Note how
loop unrolling (of i and k) and register blocking expose opportunities for data reuse to
improve e�ciency. Some extra code is needed to handle the remainder after the unrolled
loop. For simplicity, this implementation is not cache-blocked, although doing so would
be a straightforward transformation. Build and run the scalar code as follows:

eecs$ make dgemm.riscv.out

Your task is to vectorize the second loop over j. Submatrices of C and B can be held in
vector registers, while the entries of A are loaded as scalars. This naturally leads to using
vector-scalar operations to compute the partial products. As a hint, �rst work through
the matrix multiplication by hand to see how the computation can be rearranged into a
vectorizable pattern.

Complete the assembly functions for the main inner loop in ${LAB4ROOT}/benchmarks/

vec-dgemm/vec_dgemm_inner.S and the remainder loop in ${LAB4ROOT}/benchmarks/

vec-dgemm/vec_dgemm_remainder.S. Try to leverage fused multiply-add instructions
where possible. When you are ready to test your code, build and run it on the ISA
simulator:

eecs$ make vec-dgemm.riscv.out

9On vector architectures that do not feature explicit reduction instructions, this can be implemented by
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3.7 Index of Maximum Element (imax)

In this problem, you will vectorize a less conventional vector application, imax, which
�nds the index of the largest value in an array. One use case is for identifying the pivot
element in certain matrix algorithms, such as Gaussian elimination. The pseudocode is
shown in Listing 11.

Listing 11: imax pseudocode

1 idx = 0, max = -INFINITY;

2 for (i = 0; i < n; i++) {

3 if (x[i] > max) {

4 max = x[i];

5 idx = i;

6 }

7 }

Build and run the scalar version provided in ${LAB4ROOT}/benchmarks/imax/:

eecs$ make imax.riscv.out

Despite the simplicity of the scalar implementation, vectorizing imax is not as trivial. The
following approach is suggested:

1. Keep the current maximum in an f register, initialized to negative in�nity, and the
current index in an x register, initialized to zero.

2. Load a vector and �nd its maximum with a reduction.
3. Compare against the global maximum.
4. Use a vector �oating-point comparison to represent the location of the maximum

element as a vector mask.
5. Find the �rst set bit in the mask using vfirst.m. This yields the index of the

lowest-numbered element of the mask vector that has its least-signi�cant bit set, or
-1 otherwise.

6. Update the global index and maximum if necessary.

Once you understand how the reduction and mask operations work, complete the assembly
function in ${LAB4ROOT}/benchmarks/vec-imax/vec_imax.S according to the TODO
comments. When you are ready to test your code, build and run it on the ISA simulator:

eecs$ make vec-imax.riscv.out

3.8 Submission

Run the following to collect all of your code for the directed portion into one archive, and
upload directed.zip to the Gradescope autograder.

eecs$ make zip-directed

recursively halving the vector length and adding both halves together with vector addition.
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The following source �les should be present at the root of the ZIP �le:

� vec_cmplxmult.S

� vec_dgemv.S

� vec_dgemm_inner.S

� vec_dgemm_remainder.S

� vec_imax.S

The directed problems are evaluated based on correctness, so please check that your code
passes the autograder test suite.

(No written report is required for the directed portion this time.)
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4 Open-Ended Portion (Ungraded)

Select one of the following questions per team.

In writing your optimized implementation and describing your methodology in the report,
the goal is to demonstrate your understanding of vector architectures, the sources of
their performance advantages, and how these qualities can be employed in important
computational kernels.

4.1 Sparse Matrix-Vector Multiplication (spmv)

For this problem, you will implement and optimize RISC-V vector code for sparse matrix-
vector multiplication (SpMV), which is extensively used for graph processing and machine
learning. SpMV computes y = Ax, where A is a sparse matrix and x is a dense vector.
Unlike other dense linear algebra algorithms, most entries of A are zero, and the matrix
is represented in a condensed format in memory. The unoptimized pseudocode is shown
in Listing 12.

Listing 12: spmv pseudocode

1 for (i = 0; i < n; i++) {

2 for (k = ptr[i]; k < ptr[i+1]; k++) {

3 y[i] += A[k] * x[idx[k]];

4 }

5 }

A scalar reference implementation is provided in ${LAB4ROOT}/benchmarks/spmv. Build
and run the benchmark as follows:

eecs$ make spmv.riscv.out

Add your own double-precision vector implementation to ${LAB4ROOT}/benchmarks/vec-spmv/
vec_spmv.S. When you are ready to test your code, build and run it on the ISA simulator:

eecs$ make vec-spmv.riscv.out

4.1.1 Optimization

Once your code is correct, do your best to optimize spmv to minimize the number of cycles
(per mcycle).

You are only allowed to write code in vec_spmv.S; do not change any code in vec_spmv_

main.c except for debugging. If you would like to perform some transformation on the
inputs, only do so after you have veri�ed the non-transformed version.

Common techniques that generally work well are loop unrolling, loop interchange, lifting
loads out of inner loops and scheduling them earlier, blocking the code to utilize the full
register �le, and transposing matrices to achieve unit-stride accesses for improved locality.

More speci�c to vector architectures, try to refactor all element loads into vector loads.
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Use fused multiply-add instructions where possible. Also, carefully choose which loop(s)
to vectorize for this problem, as not all loops can be safely vectorized!

4.1.2 Submission

Please ensure that your code is appropriately commented. Use the following command! →
to archive your code for submission, and record the resulting vec-spmv.zip �le to the
Gradescope autograder.

eecs$ make zip-spmv

In a separate report, roughly explain how your SpMV implementation works, and report
the dynamic instruction count and cache statistics. Also explain how you arrived at your
implementation, and describe at least three optimizations that you applied in detail. How
much improvement did they yield over the previous iterations of your code?

4.2 Radix Sort (rsort)

For this problem, you will implement and optimize RISC-V vector code for radix sort
(rsort), a non-comparative integer sorting algorithm. The unoptimized pseudocode is
shown in Listing 13. In iteration i, each value is assigned to a bucket by its i-th digit,
starting from the least-signi�cant digit. After all values are allocated to buckets, they are
merged sequentially into a new list. This algorithm repeats until all digits in every value
have been traversed.

Listing 13: rsort pseudocode

1 // TYPE_MAX: maximum value of the data type

2 for (power = 1; power < TYPE_MAX; power *= BASE) {

3 // Number of buckets = BASE

4 for (k = 0; k < BASE; k++) {

5 buckets[k] = [];

6 }

7 for (j = 0; j < ARRAY_SIZE(array); j++) {

8 key = array[j];

9 // Extract next digit

10 digit = (key / power) % BASE;

11 // Assign value to bucket

12 buckets[digit].append(key);

13 }

14 // Merge buckets sequentially

15 new_array = [];

16 for (k = 0; k < BASE; k++) {

17 new_array.extend(bucket[k]);

18 }

19 array = new_array;

20 }

A scalar reference implementation is provided in ${LAB4ROOT}/benchmarks/rsort. Rather
than directly assigning the values to buckets, the optimized version uses the buckets to
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produce a histogram of occurrences of each digit, which is then used to compute the o�set
of each element in the new array. Thus, the merge step becomes a permutation. Build
and run the benchmark as follows:

eecs$ make rsort.riscv.out

Add your own vector implementation to ${LAB4ROOT}/benchmarks/vec-rsort/vec_rsort.
S. The data values are 32-bit unsigned ints. When you are ready to test your code,
build and run it on the ISA simulator:

eecs$ make vec-rsort.riscv.out

4.2.1 Optimization

You can feel that this may be a more challenging algorithm to vectorize than usual, so
focus on �rst getting the code to work correctly before embarking on any complicated
optimizations.

Once your code passes the given test, do your best to optimize rsort to minimize the
number of cycles (per mcycle). You are only allowed to write code in vec_rsort.S; do
not change any code in vec_rsort_main.c except for debugging.

Indexed vector memory operations (scatter/gatter) and predication will be heavily used
in this benchmark. Take care when updating buckets, as the same bucket may be accessed
multiple times by a vector operation.

The general suggestions for spmv in Problem 4.1 also apply to rsort. In practice, vrem can
be expensive in terms of performance, being essentially a long-latency divide operation
per element, so it should be avoided. You may also notice that every bucket might be
able to �t in a single vector; if so, consider how buckets could be kept in the same vectors
across iterations.
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5 Feedback Portion

In order to improve the labs for the next o�ering of this course, we would like your
feedback. Please append your feedback to your individual report for the directed portion.

� How many hours did you spend on the directed and open-ended portions?
� What did you dislike most about the lab?
� What did you like most about the lab?
� Is there anything that you would change?
� Is there something else you would like to explore in the open-ended portion?
� Are you interested in modifying hardware designs as part of the lab?

Feel free to write as much or as little as you prefer (a point will be deducted only if left
completely empty).

5.1 Team Feedback

In addition to feedback on the lab itself, please answer a few questions about your team:

� In a few sentences, describe your contributions to the project.
� Describe the contribution of each of your team members.
� Do you think that every member of the team contributed fairly? If not, why?
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A Appendix: Debugging

For each benchmark, the ISA simulator prints an instruction trace to ${LAB4ROOT}/

benchmarks/*.riscv.out.

The disassembly for speci�c benchmarks can be dumped as follows, which can be useful
for comparing against the instruction traces and verifying that the code was assembled
as expected.

eecs$ cd ${LAB4ROOT}/benchmarks

eecs$ make <bmark>.riscv.dump
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It is also possible to generate a more detailed commit log that records every value written
to each destination register and the address stream of memory accesses.

eecs$ make <bmark>.riscv.log

The current SEW, LMUL, and vector length are also logged for each vector instruction.
Note that the contents of a vector register are shown concatenated as a single raw hex
value; refer to the �Mapping of Vector Elements to Vector Register State� section in the
RVV spec for how to unpack the layout. For LMUL > 1, the v registers that comprise a
vector register group are displayed separately, possibly in an arbitrary order.

Finally, it can be very helpful to debug using a smaller dataset. Switch to dataset2.h

for the open-ended problems, or generate custom input data using the provided scripts.
However, make sure that your code eventually passes the test using dataset1.h.
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