
CS 161 Computer Security
Fall 2005 Joseph/Tygar/Vazirani/Wagner HW 2

Due Friday, October 14 at 11am
Please include the following at the top of the first page of your homework solution:

Your full name
Your login name
The name of the homework assignment (e.g. hw3)
Your TA’s name

Staple all pages together, and drop them off in drop box #2 (labeled CS161/Fall 2005) in 283 Soda by 11am
on the due date.

Homework exercises:

1. (4 pts.) Any questions?
What’s the one thing you’d most like to see explained better in lecture or discussion sections? A
one-line answer would be appreciated.

2. (20 pts.) PGP
In this question, you will learn how to use PGP, a popular format for email encryption. Of course,
plain email is totally insecure: it is very easy to send forged email with a spoofed From: address, and
it is often easy to intercept (eavesdrop) on email. PGP was first built by Phil Zimmerman as a way for
activists to communicate securely over the internet. Over time, it has evolved into an open standard,
called OpenPGP. There are several programs that support this message format: PGP is made by PGP
Corporation; gpg is an open-source Gnu implementation. They can all interoperate.
The instructional machines already have gpg installed, so the following instructions assume that you
will use gpg on the instructional machines. Note that you can get documentation on how to use
gpg by simply typing man gpg. The instructional web pages also have a more detailed tutorial at
http://www-inst.eecs.berkeley.edu/cgi-bin/pub.cgi?file=gpg.help.

(a) Generate a new key pair. With gpg, you can use gpg --gen-key. This will construct a
public key and a private key. Make sure your keysize is at least 1024 bits.
Then, export your public key into ASCII-armored format, and save the result to the file pubkey.asc
in your home directory. With gpg, you can use gpg --export --armor > ˜/pubkey.asc.
Make sure that the resulting public key is world-readable: chmod a+r ˜/pubkey.asc.

(b) Extract the fingerprint of your public key. With gpg, the fingerprint is printed out when you
generate the key, or you can use gpg --fingerprint. The finger print is a long string of
about 40 hex digits that can be used to uniquely identify your public key. It is generated by
applying a collision-resistant hash function to your public key, so no two public keys will have

CS 161, Fall 2005, HW 2 1

the same fingerprint. This is very useful: if I want to send you my public key, I can email you my
public key (or send it to you over any insecure channel), and then we can compare fingerprints
over a secure channel. For instance, I might print my fingerprint on my business card, or you
can telephone me and I can read off my fingerprint out loud.
Write down your fingerprint as the answer to this question.

(c) Get your TA’s public key, and import it into your “keyfile”. Your TA’s public key will be stored
in ˜cs161/pubkeys/ta-name.asc on the instructional machines. (Replace ta-name
with the last name of your TA.) With gpg, you can import it into your keyfile using
gpg --import ˜cs161/pubkeys/whoever.asc.
IMPORTANT: Check the fingerprint of the key you just imported. You can view the fingerprint
of the key you just imported using gpg --fingerprint. Here are the fingerprints for the
TA’s public keys:

F40B 92ED F74C 98A6 427E CEFD 6157 099E 7FCF 6767 Paul Huang
04B1 4409 6161 7094 77CD 9AC2 52BF 4AA6 EF37 EB53 Jeff Kalvass
8C67 1E41 CB1E 9D41 B008 E256 EF63 3EBB 7160 8841 Russell Sears
9512 62C0 789F EC33 26DB CA4E 53C6 949D 4FF9 E26E Ivan Tam

Verifying fingerprints is important; otherwise, Mallet (the malicious attacker) might be able to
trick you into accepting a key pair she generated as your TA’s key, and then Mallet would be
able to read all the encrypted mail you send to your TA.

(d) Once you have verified your TA’s public key, sign it. With gpg, you can use gpg --sign-key
name, where name is a string used to identify your TA’s public key (you can use your TA’s fin-
gerprint, typed as a hex string with no spaces, or part of your TA’s real name).
Then, export the signed version of your TA’s public key, and save the result into the file ˜/ta.asc
in your home directory. With gpg, you can use gpg --armor --export name > ˜/ta.asc,
where again name is a string that identifies your TA’s public key.

(e) Finally, compose and send an encrypted, signed email to your TA. Create a text file containing a
very short message to your TA, and include your name. This is the cleartext. Now encrypt it with
your TA’s public key, and sign it with your private key, and save it in ASCII-armored format, and
email the resulting ciphertext to your TA. With gpg, you can use gpg --encrypt --sign
--armor --recipient name < msg > msg.asc, where name is a string identifying
your TA, to generate the ciphertext. Once you’ve generated the ciphertext, email it to your TA.

3. (10 pts.) One-time pad

(a) Suppose you want to encrypt a message M ∈ {0,1,2} using a shared random key K ∈ {0,1,2}.
Suppose you do this by representing K and M using two bits (00, 01, or 10), and then XORing
the two representations. Does this scheme have the security guarantees of the one-time pad?
Explain.

(b) Give an alternate encryption algorithm for carrying out the above task that does provide strong
security guarantees.
Note: You must not change the message space {0,1,2} or the key space {0,1,2}. Instead, we
want you to design an encryption algorithm E(·, ·) so that E(K,M) is a secure encryption of M,
when K and M are distributed as above.

4. (10 pts.) An RSA reduction
For this question, assume we use RSA with e = 3. Suppose the adversary with knowledge of the RSA

CS 161, Fall 2005, HW 2 2

public key (N,e) can determine the private key d. Show that she can use this information to quickly
factor N. How fast is your algorithm?

5. (21 pts.) The definition of a secure block cipher
The goal of this problem is to help you work through the definition of what it means to be a secure
block cipher.
Suppose we have a block cipher with key length k and block length n. Recall the definition of a
secure block cipher: it is that AdvA ≤ ε , for all algorithms A running in time at most T . In other
words, we perform the following experiment: the adversary is given a box which contains either (I)
the block cipher with a random key or (II) a uniformly random permutation on n bits. Eve is allowed
T time in which to play with the box to guess whether it type I or type II. The advantage of the
adversary, A, is the absolute value of the difference between the to be AdvA = |p−q|, where p is the
probability that the adversary guesses box I when the box she is given is actually of type I, and q is the
probability that the adversary guesses box I when the box she is given is actually of type II. Formally,
p = PrK [AEK(·) = type I], and q = PrP[AP(·) = type I]. Here P denotes a uniformly random permutation
on n bits, and PrX [Ev] denotes the probability of event Ev with respect to the random choice of X .
Also, A f is a special kind of notation that represents executing algorithm A with access to a box that
compute the function f ; at any point, A may supply a value x to the box, and the box responds with
the value f (x). Thus, the box is like a special kind of subroutine that A can invoke at any time.
For this question, assume that AES is a secure block cipher, for some reasonable values of T and ε
(say, T = 280 and ε = 1/248, maybe).
Each part below defines a candidate block cipher E. Which ones are secure? For each part, say either
“secure” or “insecure”; you should have a justification in mind, but don’t bother writing it down.
(Suggestion: If you conjecture it is probably secure, you might want to look for a reduction: a proof
that it is secure if AES is. If you conjecture that it is probably insecure, you might want to work out
how to attack it. This will help you be confident in your answer. But again, you don’t need to write
down whatever proof or attack you come up with.)

(a) EK(M) = K ⊕M, where M and K are 128-bit values.
(b) EK(M) = AESK(M)⊕1, where 1 represents the all-ones 128-bit value and AESK(M) represents

the AES encryption of message block M under key K.
(c) EK(M) = AES0(M), where 0 represents the all-zeros AES key and M is a 128-bit value.
(d) EK(M) = AES0(M⊕K).
(e) EK(M) = AESK1(AESK0(M)), where K = (K0,K1) is a 256-bit value (the concatenation of two

128-bit AES keys K0 and K1).
(f) EK(M) = (AESKL(ML),AESKR(MR)) where M = (ML,MR) is a 256-bit message (the concate-

nation of 128-bit values ML and MR) and K = (KL,KR) is a 256-bit key (the concatenation of
128-bit values KL and KR).

(g) EK(M) = AES−1
K (AESK(M)⊕1), where AES−1

k (c) represents the AES decryption of ciphertext
block c under key k and 1 represents the all-ones 128-bit value.

6. (35 pts.) Security of CBC Encryption
This goal of this problem is to prove that a symmetric encryption scheme using the CBC mode is
secure under chosen plaintext attack.
Assume that the symmetric encryption scheme is built out of a secure block cipher E with key length
k and block length n and with security guarantee AdvA ≤ T/2l , where l is a security parameter and
the adversary is allowed T time.

CS 161, Fall 2005, HW 2 3

Security under chosen plaintext attack involves the following game. The adversary has access to a
box which contains a hidden key K. The box takes as input a pair of same-length plaintext messages
(M,M′) and the box outputs either (I) the CBC encryption of M (under key K) or (II) the CBC encryp-
tion of M′ (under key K). The adversary is allowed to play with the box for the available time and must
guess whether it is a box of type I or II. To establish security of the CBC mode under plaintext attack
we must show that the adversary has negligible advantage in distinguishing between the two cases. As
before, the advantage of the adversary is AdvA = |Pr[Abox of type I = type I]−Pr[Abox of type II = type I]|.
In this problem we will establish this in the special case where the adversary submits only one input
of her choice (M,M′) to the box. Let us assume that the messages M,M ′ each consist of j blocks of n
bits each. In parts (a)–(d), we will show that if the block cipher is a truly random permutation P, then
the advantage of the adversary is at most 2

(j+1
2

)

/(2n − j). In part (e), we will show that CBC mode is
secure when used with a secure block cipher E (instead of a random permutation).

(a) Show that if CBC encryption of messages M and M ′, with truly random permutation P, each
invoke the cipher P on distinct inputs, then the adversary has no advantage in distinguishing
between the encryption of M and the encryption of M ′.
HINT: What does the distribution of the ciphertext C look like if the box is of type I? if it is of
type II?

(b) Recall when using CBC mode with random permutation P, the encryption algorithm picks a
random n bit string as the initial vector IV, and outputs the ciphertext C0, . . . ,C j, where Ci =
P(Di), where D0 = IV and Di = Ci−1⊕Bi for i ≥ 1, and where Bi is the ith block of the message
to be encrypted.
Suppose that D0,D1, . . . ,Dm−1 are given and are all distinct, and that i < m is given. Prove that,
in this case, the probability that Dm = Di is at most 1/(2n −m).
HINT: What is the probability that P(Dm−1) = Di ⊕Bm? Why?

(c) Show that the probability that the cipher P is invoked twice on the same input while encoding M
(or, for that matter, M′) is at most

(j+1
2

)

/(2n − j).
HINT: Use the fact that Pr[A1∪A2∪·· ·∪An]≤ Pr[A1]+Pr[A2 | not(A1)]+ · · ·+Pr[An | not(A1∪
·· ·∪An−1)]. (Do you see why this is true?)

(d) Show that, when using a truly random block cipher P, the advantage of the adversary at breaking
CBC is at most 2

(j+1
2

)

/(2n − j).
HINT: There is some event E so that Pr[Atype I box = type I | E] = Pr[Atype II box = type I | E].
What is the event E? What is Pr[E]? What does this imply about AdvA?

(e) Now show that if we replace the truly random cipher P in the CBC protocol with a block cipher
E with security T/2l , then the resulting CBC protocol has security T/2l +2

(j+1
2

)

/(2n − j).
HINT: Show how to modify any adversary ACBC that can break the CBC protocol with advantage
ε , to obtain an adversary Acipher that can break the block cipher E with advantage at least ε −
2
(j+1

2
)

/(2n − j). It is possible to define Acipher by making some simulating the behavior of
ACBC—do you see how?

CS 161, Fall 2005, HW 2 4

