
CS 161 Computer Security
Fall 2005 Joseph/Tygar/Vazirani/Wagner HW 2

Solution
1. (4 pts.) Any questions

Any constructive responses is given full credit.

2. (20 pts.) PGP
If you emailed your TA with a correctly signed encrypted message you will receive full credit.

3. (10 pts.) One-time pad

(a) No, this scheme does not have the security guarantees of a one-time pad. Table 1 lists the
resulting encrypted messages using this scheme. We can see that some outcomes exclude certain
inputs. For example, given (M,K) = 11 an attacker knows that the sent message M is not 0.

(b) We wish to design a new encryption algorithm E∗(·, ·) that has the security guarantees of the
one-time pad. We require that given E∗(M,K), an attacker should get no information about M.
This property is satisfied for any E∗(M,K) that is uniform on {0,1,2}. One such algorithm is as
follows:

E∗(M,K) = M +K mod 3.

Table 2 confirms that each outcome is equally likely.

4. (10 pts.) An RSA reduction
We wish to factor N = pq. Since e = 3 and d are inverses modulo ϕ(N) = (p−1)(q−1), have that

3d = ed = 1+ k(p−1)(q−1) = 1+ kϕ(N)

for some k ∈ {1,2, . . .}. Also we have that d < ϕ(N), so k ∈ {1,2}. (In fact k = 2 always.)

Table 1: Encrypted messages using E

M K E(M,K)
00 00 00
00 01 01
00 10 10
01 00 01
01 01 00
01 10 11
10 00 10
10 01 11
10 10 00
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Table 2: Encrypted messages using E∗

M K E∗(M,K)

00 00 00
00 01 01
00 10 10
01 00 01
01 01 10
01 10 00
10 00 10
10 01 00
10 10 01

We have a finite number of possible values of k, so we can check which k is correct as follows:
Fix a k. Given this guess at k, we can infer a presumed values for ϕ(N) via

ϕ(N)k =
3d −1

k
.

Also the true value for ϕ(N) satisfies ϕ(N) = (p− 1)(q− 1) = pq− p− q + 1 = N − N
q − q + 1;

rewriting this, we can solve for q via the quadratic equation, given the value of ϕ(N). This gives a
way to test whether our guess ϕ(N)k was correct, since we can use our guess to solve for q and test
whether the resulting q is indeed a factor of N.
The running time is polynomial in the number of bits of N: we use O(1) operations on integers no
larger than N, which corresponds to O((lgN)2) bit operations.
An algorithm for general e is given in G. Miller, “Riemann’s hypothesis and tests for primality,”
Journal of Computer and System Sciences, 13(3):300-317, 1976. This algorithm is in time polynomial
to the number of bits in N.

5. (21 pts.) The definition of a secure block cipher

(a) Insecure
A distinguishing attack on the block cipher E is as follows:
Ask for the encryption of two messages M,M ′; receive the ciphertexts C,C′. If M⊕C = M′⊕C′,
then guess that you are interacting with E; otherwise, you are definitely interacting with P. This
works because M⊕EK(M) = K for all M, yet the corresponding equality occurs with extremely
low probability for P. The distinguishing advantage of this attack is 1−1/(2128 −1).

(b) Secure
A reduction proving the security of E goes as follows:
Suppose there is some successful distinguishing attack A that breaks E. Define the attack B by
B f = A f (·)⊕1. In other words, B simulates the operation of A, except that when A hands message
M to its box, B queries its box with M, receives C, hands C⊕1 back to A (as though it were the
response from A’s box), and continues to simulate A. I claim that B breaks AES. In particular,
BAESK(·) = AEK , and BP(·) = AP′(·), where P′(x) = P(x)⊕1. Now if P is a random permutation,
then so is P′. This means that B distinguishes AES from a random permutation, with advantage
AdvB = AdvA. In summary, if there is any attack that breaks E (distinguishes E from random
with advantage ε), then there is an attack that breaks AES (distinguishes AES from random with
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the same advantage ε). Taking the contrapositive, we see that if AES is secure (there is no attack
that breaks AES), then E is secure (there is no attack that breaks E).

(c) Insecure
An attack on the block cipher E is as follows:
Ask for the encryption of message M, receiving C; if C = AES0(M), then guess that you are
interacting with E; otherwise, you are definitely interacting with P. This attack has advantage
1−1/2128 at distinguishing E from P.

(d) Insecure
An attack on the block cipher E is as follows:
The attack is a combination from part (a) and (c). Ask for the encryption of two messages M,M ′;
receive the ciphertexts C,C′. Decrypt C and C′ under AES with key 0. If M⊕AES−1

0 (C) = M′⊕
AES−1

0 (C′), then guess that you are interacting with E; otherwise, you are definitely interacting
with P.

(e) Secure
Here is a sketch of a proof:
Since AES is secure, you cannot distinguish AESK1(AESK0(·)) from AESK1(P(·)). (One can
prove this by a reduction: if A distinguishes these two, then B, given by B f = AAESk( f (·)) where k
is chosen randomly, distinguishes AES from P, which is impossible.) Also, since AES is secure,
you cannot distinguish AESK1(P(·)) from P′(P(·)), where P′ is a random permutation chosen
uniformly and independently at random from P. (Another reduction: B f = A f (P(·)).) But P′ ◦P
is also a random permutation. Combining the above statements, we see that EK(·) cannot be
distinguished from a random permutation.

(f) Insecure
An attack:
Let M = (ML,MR) be arbitrary. Choose M′ = (ML,M′

R), so that M and M′ have the same left
half. Ask for the encryption of M and M ′, receiving C and C′. Check whether C and C′ agree
in their left half. If CL = C′

L, guess that you are interacting with E; otherwise, you are definitely
interacting with P.

(g) Insecure
An attack:
Choose M arbitrarily. Ask for the encryption of M, receiving C. Ask for the encryption of C,
receiving C′. Now if C′ = M, guess that you are interacting with E; otherwise, you are interacting
with P. This works since

EK(EK(M)) = AES−1
K (AESK(AES−1

K (AESK(M)⊕1))⊕1)

= AES−1
K ((AESK(M)⊕1)⊕1)

= AES−1
K (AESK(M))

= M

but P(P(M)) is rarely equal to M.

6. (35 pts.) Security of CBC encryption

(a) If the inputs to the cipher P are distinct, then the distribution on the ciphertext C = (C0, . . . ,C j)
is as follows: it is uniformly distributed on the set of ciphertexts such that all the Ci’s are distinct.
Thus the distribution of the cipher text C when box is type I is the same as when the box is type
II, if P is invoked on distinct inputs.
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Since the distribution of the cipher text C is the same for both type I and type II box, the ad-
versary has no advantage in distinguishing between the encryption of M and the encryption of
M′. Formally, the distribution on the output of Abox of type I is the same as the distribution on the
output of Abox of type II (since everything A sees has the same distribution regardless of the type
of the box), so Pr[Abox of type I = type I] = Pr[Abox of type II = type I], and thus AdvA = 0.

(b) Let Em denote the event that D0, . . . ,Dm−1 are all distinct. We wish to prove that Pr[Dm =
Di|Em] ≤ 1/(2n −m).
Note that Dm =Cm−1⊕Bm = P(Dm−1)⊕Bm. Therefore, Dm = Di holds if and only if P(Dm−1)⊕
Bm = Di, or equivalently, if and only if P(Dm−1) = Di⊕Bm. This means our goal is to show that
Pr[P(Dm−1) = Di ⊕Bm|Em] ≤ 1/(2n −m).
Suppose D0, . . . ,Dm−1 and P(D0), . . . ,P(Dm−2) have all been chosen. Then Di ⊕Bm is just a
fixed bit string. Also (by assumption) Dm−1 is different from all of D0, . . . ,Dm−2. Thus the
distribution on P(Dm−1) is uniform on the set of all values other than P(D0), . . . ,P(Dm−2). In
particular, the value that P(Dm−1) hits any fixed bit string in this case is ≤ 1/(2n −m).

(c) We want to bound the probability that Di = D j for some i 6= j. Let E denote the event that all
Di’s are distinct, so we are looking for an upper bound on Pr[¬E]. Define Am as the event that
Dm = Di for some i < m. By part (b),

Pr[Am|¬(A1 ∪·· ·∪Am−1)] ≤
m−1

∑
i=0

Pr[Dm = Di|Em] ≤
m−1

∑
i=0

1/(2n −m) = m/(2n −m).

Now we are ready to calculate the desired bound:

Pr[¬E] = Pr[A1 ∪A2 ∪ . . .∪A j]

≤ Pr[A1]+Pr[A2|¬A1]+ · · ·+Pr[A j|¬(A1 ∪·· ·∪A j−1)]

≤
j

∑
k=1

k
2n − k

(see above)

≤
1

2n − j

j

∑
k=1

k

=
1

2n − j
×

j( j +1)

2

=

(

j +1
2

)

1
2n − j

.

(d) First we answer the questions from the hint. Event E is as above—namely, when all the inputs to
cipher P are unique. By part (c), Pr[E] ≥ 1−

( j+1
2

)

/(2n − j). Also Pr[Abox of type I = type I|E] =
Pr[Abox of type II = type I|E] (by part (a)).

CS 161, Fall 2005, HW 2 4



Now we can calculate the advantage of the adversary at breaking CBC-P:

AdvA =
∣

∣Pr[Abox of type I = type I]−Pr[Abox of type II = type I]
∣

∣

=
∣

∣Pr[¬E] ·Pr[Abox of type I = type I|¬E]+Pr[E] ·Pr[Abox of type I = type I|E]

−Pr[¬E] ·Pr[Abox of type II = type I|¬E]−Pr[E] ·Pr[Abox of type II = type I|E])
∣

∣

=
∣

∣Pr[¬E] ·Pr[Abox of type I = type I|¬E]−Pr[¬E] ·Pr[Abox of type II = type I|¬E]

+ Pr[E] ·Pr[Abox of type I = type I|E]−Pr[E] ·Pr[Abox of type II = type I|E])
∣

∣

=
∣

∣Pr[¬E] ·Pr[Abox of type I = type I|¬E]−Pr[¬E] ·Pr[Abox of type II = type I|¬E]
∣

∣

(the last two terms were equal, by part (a))
= Pr[¬E] ·

∣

∣Pr[Abox of type I = type I|¬E]−Pr[Abox of type II = type I|¬E]
∣

∣

≤ Pr[¬E] (since |p−q| ≤ 1 whenever 0 ≤ p,q ≤ 1)

≤ 2
(

j +1
2

)

/(2n − j). (by part (d))

(e) Recall that box I computes the function (M,M ′) 7→CBC-AESK(M), and box II computes (M,M′) 7→
CBC-AESK(M′). Our goal is to show that these two boxes are indistinguishable.

• Let box I′ represent the function (M,M′) 7→ CBC-P(M). We will first show that box I is
indistinguishable from box I′.
Proof: By a reduction. Suppose A is an attacker that distinguishes box I from box I′. We’ll
define an algorithm B that distinguishes a AESK(·) box from a P(·) box. B f works by
simulating A and using its (B’s) box f to emulate CBC- f (·); this is possible, since CBC
only uses AES or P as subroutines. If A sends (M,M ′) to its box, where M = (M1, . . . ,M j),
then B will pick a random IV D0, compute C0 = f (D0) and Ci = f (Ci−1 ⊕Mi) for i =
1, . . . , j, and return C = (C0, . . . ,C j) to A. Finally, B outputs whatever A does. Note that
BAESK(·) = Abox I and BP(·) = Abox I′ . Therefore AdvB = AdvA; but by assumption, we
know that AdvB ≤ T/2l . In conclusion, there is no way to distinguish box I from box I′
with advantage greater T/2l .

• Let box II′ represent the function (M,M′) 7→ CBC-P(M′). By a very similar argument, box
II cannot be distinguished from box II′, except with advantage ≤ T/2l .

• Finally, by part (e), box I′ cannot be distinguished from box II′, except with advantage
≤ 2

( j+1
2

)

/(2n − j).
This means that box I cannot be distinguished from box II except with advantage ≤ 2T/2l +
2
( j+1

2
)

/(2n − j).
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