Background & Review of Communication Fundamentals

CS 161/194-1 Anthony D. Joseph September 9, 2005

Outline

- Communications Network Taxonomy
 - Packet Networks
- The Internet
- Transport Layer: UDP/IP, TCP/IP
- Network Service Examples
- · P2P applications

Many slides courtesy of EE 122 (Stoica/Katz)

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner

What is a Communication Network? (End-system Centric View)

- Network offers one basic service: move information
 Bird, fire, messenger, truck, telegraph, telephone, Internet ...
- · What distinguish different types of networks?
- The services they provide, security, ...
- What distinguish the services?
 - Latency
 - Bandwidth
 - Loss rate
 - Number of end systems
 - Service interface (how to invoke the service?)
 - Others
- Reliability, unicast vs. multicast, real-time...
- What are the security issues?
 - Authentication, privacy, anonymity, integrity, ...

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner What is a Communication Network? (Infrastructure Centric View)

- Communication medium: electron, photon
- · Network components:
 - Links carry bits from 1 place to 1 or more: fiber, copper, wireless,...
 - Interfaces attach devices to links
 - Switches/routers interconnect links: electronic/optic, crossbar/Banyan
 - Hosts communication endpoints: PCs, PDAs, cell phones, toasters
- Protocols rules governing communication between nodes
 - TCP/IP, ATM, MPLS, SONET, Ethernet, X.25
- Applications: Web browser, X Windows, FTP, ...
- Low-level security issues:
 - Authentication, privacy, integrity, ...

September 9, 2005 CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner

Network Components (Examples)

Links
Fibers

Wireless card

Coaxial Cable

Vireless card

Telephone switch

CS161 Fall 2005

Taxonomy of Communication Networks · Communication networks can be classified based on the way in which the nodes exchange information: Network Switched Communication Packet-Switched Circuit-Switched Communication Communication Network Network Virtual Circuit Network CS161 Fall 2005 September 9, 2005 Joseph/Tygar/Vazirani/Wagne

1

Broadcast vs. Switched Communication Networks

- Broadcast Communication Networks
 - Information transmitted by any node is received by every other node in the network
 - Examples: usually in LANs (non-switched Ethernet, WiFi)
- Switched Communication Networks
 - Information transmitted to a sub-set of designated nodes
 - Examples: WANs (Telephony Network, Internet), switched Ethernet
 - Problem: how to forward information to intended node(s)?
 - Done by special nodes (e.g., routers, switches) executing routing protocols
 - Can the routing process be subverted?

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner

Communication networks can be classified based on the way in which the nodes exchange information: Communication Network Circuit-Switched Communication Network Circuit-Switched Communication Network Packet-Switched Communication Network Circuit-Switched Communication Network September 9, 2005 September 9, 2005

Datagram Packet Switching

- · Each packet is independently switched
 - Each packet header contains destination address
- No resources are pre-allocated (reserved) in advance
- Example: IP networks

September 9, 2005

Joseph/Tygar/Vazirani/Wagner

Outline

- Communications Network Taxonomy
 Packet Networks
- The Internet
- Transport Layer: UDP/IP, TCP/IP
- Network Service Examples
- P2P applications

Many slides courtesy of EE 122 (Stoica/Katz)

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner 13

The Internet

- Global scale, general purpose, heterogeneous-technologies, public, computer network
- Internet Protocol
 - Open standard: Internet Engineering Task Force (IETF) as standard body (http://www.ietf.org)
 - Technical basis for other types of networks
 - Intranet: enterprise IP network
- · Developed by the research community

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagne 14

History of the Internet

- 68-70's: started as a research project, 56 kbps, initially 4 nodes (UCLA, UCSB, SRI, Utah) then < 100 computers
- 80-83: TCP/IP, DNS; ARPANET and MILNET split
- 85-86: NSF builds NSFNET as backbone, links 6
 Supercomputer centers, 1.5 Mbps, 10,000 computers
- 87-90: link regional networks, NSI (NASA), ESNet (DOE), DARTnet, TWBNet (DARPA), 100,000 computers
- 90-92: NSFNET moves to 45 Mbps, 16 mid-level networks
- 94: NSF backbone dismantled, multiple private backbones; Introduction of Commercial Internet
- Today: backbones run at 10 Gbps, close to 320M computers in 150 countries

September 9, 2005 CS16

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner

Routing

- · Routers have "routing tables"
 - Tables mapping each destination with an outgoing link
 - Requires that routing table is highly compressible!
 - Implications for address assignment, mobility, etc.
- · Routing decisions made packet-by-packet
 - Routers keep no connection state
- · Question: Why have the network do routing?
 - Why not the hosts?
 - Compare delivery-by-hand to FedEx

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner 25

Internet Service

- "Best-Effort" service
 - No guarantees about packet delivery
 - Hosts must cope with loss, delay, reordering, duplication
- Why not guarantee no loss and low delay?
- IP packets are addressed to a host
 - How to decide which application gets which packets?
- Need a transport layer!

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagne 26

Outline

- Communications Network Taxonomy
 - Packet Networks
- The Internet
- Transport Layer: UDP/IP, TCP/IP
- Network Service Examples
- P2P applications

Many slides courtesy of EE 122 (Stoica/Katz)

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner Transport Layer

Application p1 p2 p3 p1 p

Ports

- · Need to decide which application gets which packets
- · Solution: map each socket to a port
- Client must know server's port
- Separate 16-bit port address space for UDP and TCP

 (src_IP, src_port, dst_IP, dst_port) uniquely identifies TCP connection
- Well known ports (0-1023): everyone agrees which services run on these ports
 - e.g., ssh:22, http:80
- on UNIX, must be root to gain access to these ports (why?)
- Ephemeral ports (most 1024-65535): given to clients
 - e.g. chat client gets one of these

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner

29

Headers

- IP header → used for IP routing, fragmentation, error detection...
- UDP header → used for multiplexing/demultiplexing, error detection
- TCP header → used for multiplexing/deprivation
 Application
 Application

Joseph/Tygar/Vazirani/Wagne

UDP

- User Datagram Protocol
- · Minimalist transport protocol
- · Same best-effort service model as IP
- Messages up to 64KB
- "Fire and Forget"
- · Provides multiplexing/demultiplexing to IP
- Does not provide flow and congestion control
- Application examples: video/audio streaming, VoIP

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner

UDP Service & Header

- · Service:
 - Send datagram from (IPa, Port 1) to (IPb, Port 2)
 - Service is unreliable, but error detection possible
- Header:

0 1	6 31
Source port	Destination port
UDP length	UDP checksum
Payload (variable)	

•UDP length is UDP packet length (including UDP header and payload in

(including UDP header and payload, but not IP header)
•Optional UDP checksum is over UDP packet

-Optional our checksum is over our packet

September 9, 2005

31

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagne

TCP

- Transmission Control Protocol
- Reliable, in-order, and at most once delivery
- · Messages can be of arbitrary length
- · Provides multiplexing/demultiplexing to IP
- Provides congestion control and avoidance
- Application examples: file transfer, chat,

P2P September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner **TCP Service**

- 1) Open connection
- Reliable byte stream transfer from (IPa, TCP Port1) to (IPb, TCP Port2)
 - · Indication if connection fails: Reset
- 3) Close connection

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner

Open Connect SYN n; ACK k+1

DATA k+1; ACK n+1

Outline

- Communications Network Taxonomy
 - Packet Networks
- The Internet
- Transport Layer: UDP/IP, TCP/IP
- Network Service Examples
- P2P applications

Many slides courtesy of EE 122 (Stoica/Katz)

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagnel 36

32

Domain Name Service (DNS)

- Humans/applications use machine names

 e.g., www.cs.berkeley.edu
- Network (IP) uses IP addresses
 e.g., 67.114.112.23
- DNS translates between the two
 - An overlay service in its own right
 - Global distribution of name-to-IP address mappings a kind of content distribution system as well
 - Unsung hero of the Internet

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner 37

File Transfer (FTP, SCP, etc.)

Get file from soup.cs.berkeley.edu

Your PC

Get file

File

Soup.cs.berkeley.edu

67.132.22.5

DNS

September 9, 2005

CS161 Fall 2005

Joseph/Tygar/Vazirani/Wagner

Question

- · Why isn't the network in this picture?
 - Network just delivers (or not) packets to their destination
 - It plays no other role in application
- · Obvious concept now, but novel at the time
 - Makes it both harder and easier for applications
 - Hosts more complex, applications less efficient
 - Long-term flexibility
- · Security issues are hidden
 - Ex: Broadcast vs. switched

September 9, 200

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner

Email

Email message exchange is similar to previous example, except

- Exchange is between mail servers
- · DNS gives name of mail server for domain

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner

Outline

- Communications Network Taxonomy
 - Packet Networks
- The Internet
- Transport Layer: UDP/IP, TCP/IP
- Network Service Examples
- P2P applications

Many slides courtesy of EE 122 (Stoica/Katz)

September 9, 2005

CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagnel 42

P2P Model • Each user stores a subset of files • Each user has access (can download) files from all users in the system September 9, 2005 CS161 Fall 2005 Joseph/Tygar/Vazirani/Wagner

