
CS 161 Computer Security
Fall 2005 Joseph/Tygar/Vazirani/Wagner Notes 15

Writing Secure Code
This lecture discusses implementation techniques to avoid security holes when you write code. We will
describe many good practices. Many of these have a strong overlap with software engineering and general
software quality, but the demands of security place a heavier burden on programmers.
In security applications, we must eliminate all security-relevant bugs, no matter how unlikely they are to
be triggered in normal execution, because we are facing an intelligent adversary who will gladly interact
with our code in abnormal ways if there is any profit in doing so. Compare to software reliability, where we
normally focus on the bugs that are most likely to happen; bugs that only come up under obscure conditions
might be ignored if reliability is the goal, but they cannot be ignored when security is the goal. Dealing with
malice is much harder than dealing with mischance.
In these notes, we’ll especially emphasize three fundamental techniques: (1) modularity and decomposition
for security; (2) formal reasoning about code using invariants; (3) defensive programming. At the end, we
also discuss programming language-specific issues and integrating security into the software lifecycle.

1 Modularity
A well-designed system will be decomposed into modules, where modules interact with each other only
through well-defined interfaces. Each module should perform a clear function; the essence is conceptual
clarity of what it does (what functionality it provides), not how it does it (how it is implemented).
The granularity of modules is dependent on the system and language. A module typically has state and code.
For instance, in an object-oriented language like Java, a module might consist of a class (or a few closely
related classes). In C, a module might be in its own file and contain some clear external interface, along
with many internal functions that are not externally visible or callable.
Module design is as much about interface design as anything else. The interface is the contract between
caller and callee; hopefully, it should change less often than the implementation of the module itself. A caller
should only need to understand the interface. Modules should interact only through the defined interface;
for instance, you shouldn’t use global variables to communicate information from caller to callee. Think of
a module as a blob; the interface is its surface area, and the implementation is its volume. Thoughtful design
is often characterized by narrow and conceptually clean interfaces and modules with a low surface area to
volume ratio.
When you decompose the system into modules, here are some suggestions that will improve security:

• Minimize the harm that could be caused by failure of a module. Ensure that even if one module is
penetrated (e.g., by a buffer overrun) or behaves unexpectedly (e.g., due to a bug in its implementa-
tion), then the damage is contained as much possible. Draw a security perimeter around each module.
Protect modules from each other, so that one misbehaving module cannot cause other modules’s be-

CS 161, Fall 2005, Notes 15 1

havior to deviate from what was expected by the programmer. Plan for failure: think in advance about
what the consequences of a compromise of each module might be, and structure the system to reduce
these consequences.
For instance, a monolithic architecture that places all modules in a common address space is an un-
necessary security risk, because if one module is compromised then all others can be penetrated as
well. Some languages (e.g., Java) provide mechanisms for isolating modules from each other using
type-safety; with legacy languages (like C), you may need to place each module in its own process to
protect it.

• Follow the principle of least privilege at a module granularity. Provide each module the least privilege
that is necessary to get its job done. Architect the system so that most modules need only minimal
privileges.
Think about whether there is a way to structure the system so that the complex computations that will
require a lot of code are isolated in modules with few privileges. Modules with extra privileges should
have very little code. The more privilege a module is given, the greater the confidence we will want
to have that it is correct, and more confidence generally requires less code.

Example: A network server that listens on a port below 1024 might be broken up into two pieces: a small
start-up wrapper, and the application itself. Because binding to a port in the range 0–1023 requires root
privileges, the wrapper could run as root, bind to the desired port to some file descriptor, and then spawn the
application and pass it the file descriptor. The application itself could then run as a non-root user, limiting
the damage if the application is compromised. The wrapper can be written in only a few dozen lines of code,
so we should be able to validate it quite thoroughly.
Example: A web server might be structured as a composition of two modules. One module might be
responsible for interacting with the network; it could handle incoming network connections and parse them
to identify the requested URL. The second module might translate the URL into a filename and read it from
the filesystem. Note that the first module can be run with no privileges at all (assuming it is started by a
root wrapper that binds to port 80). The second module might be run as some special userid (e.g., www),
and we might ensure that only documents intended to be publicly visible are readable by user www. This
then leverages the file access controls provided by the operating system so that even if the second module is
penetrated, the attacker cannot cause any harm to the rest of the system.

2 Reasoning About Code
Often functions make certain assumptions about their arguments, and it is the caller’s responsibility to make
sure those assumptions are valid. These are often called preconditions. A precondition for f() is an
assertion (a logical proposition) that must hold at input to f(). The function f() is supposed to behave
correctly and produce meaningful output as long as its preconditions are met. If any precondition is not met,
all bets are off. Therefore, the caller must be sure to call f() in a way that will make these preconditions
true. In short, a precondition imposes an obligation on the caller, and the callee may freely assume that the
obligation has been met.
Here is a simple example of a function with a precondition:

/* Requires: p != NULL */
int deref(int *p) {

return *p;
}

CS 161, Fall 2005, Notes 15 2

It is not safe to dereference a null pointer; therefore, we impose a precondition that must be met by the caller
of deref(). The precondition is that p 6= NULL must hold at the entrance to deref(). As long as all
callers ensure this precondition, it will be safe to call deref().
Assertions may be combined using logical connectives (and, or, implication). It is often also useful to allow
existentially (∃) and universally (∀) quantified logical formulas. For instance:

/* Requires:
a != NULL
for all j in 0..n-1, a[j] != NULL */

int sum(int *a[], size_t n) {
int total = 0, i;
for (i=0; i<n; i++)

total += *(a[i]);
return total;

}

The second precondition might be expressed in mathematical notation as something like

∀j . (0 ≤ j< n) =⇒ a[j] 6= NULL.

If you are comfortable with formal logic, you can write your assertions down in this way, and this will
help you be precise. However, it is not necessary to be so formal. The primary purpose of preconditions is
to help you think explicitly about precisely what assumptions you are making, and to communicate those
requirements to other programmers and to yourself.
Postconditions are also useful. A postcondition for f() is an assertion that is claimed to hold when f() re-
turns. The function f() has the obligation of ensuring that this condition is true when it returns. Meanwhile,
the caller may freely assume that the postcondition has been established by f(). For example:

/* Ensures: retval != NULL */
void *mymalloc(size_t n) {

void *p = malloc(n);
if (!p) {

perror("Out of memory");
exit(1);

}
return p;

}

When you are writing code for a function, you should first write down its preconditions and postconditions.
This specifies what obligations the caller has and what the caller is entitled to rely upon. Then, verify that,
no matter how the function is called, as long as the precondition is met at entrance to the function, then the
postcondition will be guaranteed to hold upon return from the function. You should prove that this is always
true, for all inputs, no matter what the caller does. If you can find even one case where the caller provides
some inputs that meet the precondition, but the postcondition is not met, then you have found a bug in either
the specification (the preconditions or postconditions) or the implementation (the code of the function you
just wrote), and you’d better fix whichever is wrong.
How do we prove that the precondition implies the postcondition? The basic idea is to try to write down
a precondition and postcondition for every line of code, and then do the very same sort of reasoning. The

CS 161, Fall 2005, Notes 15 3

requirement is that each statement’s postcondition must match (or imply) the precondition of any statement
that follows it. Thus, at every point between two statements, you write down an invariant that should be true
any time execution reaches that point. The invariant is a postcondition for the preceeding statement, and a
precondition for the next statement.
It is pretty straightforward to tell whether a statement in isolation fits its pre- and post-conditions. For
instance, a valid postcondition for the statement “v=0;” would be v = 0 (no matter what the precondition
is). Or, if the precondition for the statement “v=v+1;” is v≥ 5, then a valid postcondition would be v≥ 6.
As another example, if the precondition for the statement “v=v+1;” is w ≤ 100, then w ≤ 100 is also a
valid postcondition (assuming v and w do not alias).
This leads to a very useful concept, that of loop invariants. A loop invariant is an assertion that is true at the
entrance to the loop, on any path through the code. The loop invariant has to be true before every iteration
to the loop. To verify that a condition really is a valid loop invariant for the loop, you treat the condition as
both a pre-condition and a post-condition for the loop body.
Let’s try an example. Here is some code that computes the factorial function:

/* Requires: n >= 1 */
int fact(int n) {

int i, t;
i = 1;
t = 1;
while (i <= n) {

t *= i;
i++;

}
return t;

}

A prerequisite is that that input must be at least 1 for this implementation is not correct. Suppose we want
to prove that the value of fact(.) is always positive. We’ll annotate the code with invariants:

/* Requires: n >= 1
Ensures: retval >= 0 */

int fact(int n) {
int i, t;

/* n>=1 */
i = 1;

/* n>=1 && i==1 */
t = 1;

/* n>=1 && i==1 && t==1 */
while (i <= n) {

/* 1<=i && i<=n && t>=1 <-- loop invariant */
t *= i;

/* 1<=i && i<=n && t>=1 */
i++;

/* 2<=i && i<=n+1 && t>=1 */
}

/* i>n && t>=1 */

CS 161, Fall 2005, Notes 15 4

return t;
}

How do we verify that the invariants are correct? This might look pretty complicated, but don’t get
discouraged—it’s actually pretty easy if you just take the time to look at each step. Notice that the function’s
precondition implies the invariant at the beginning of the function body. Also, the invariant at the end of the
function body implies the function’s postcondition. Thus, if each statement matches the invariant immedi-
ately before and after it, everything will be ok. The only non-trivial reasoning is in the loop invariant. First,
we must prove that at the entrance to the first iteration of the loop, the loop iteration will be true, and this
follows since the logical proposition n ≥ 1∧i = 1∧t = 1 implies 1 ≤ i ≤ n∧t ≥ 1 (e.g., if i = 1, then
certainly i≥ 1). Also, we must prove that if the loop invariant holds at the beginning of any iteration of the
loop, then it will hold at the beginning of the next iteration, if there is another iteration. This is true, since
the invariant at the end of the loop body (2 ≤ i≤ n+1∧t≥ 1) together with the loop termination condition
(i≤ n) implies the invariant at the beginning of the loop body (1 ≤ i≤ n∧t≥ 1). It follows by induction
on the number of iterations that the loop invariant is always true on entrance to loop body. The conclusion
is that fact() will always make the postcondition true, so long as the precondition is established by its
caller.
To give you some more practice, we’ll show another example implementation of fact(), this time using
recursion. Here goes:

/* Requires: n >= 1 */
int fact(int n) {

int t;
if (n == 1)

return 1;
t = fact(n-1);
t *= n;
return t;

}

Do you see how to prove that this code always outputs a positive integer? Let’s do it:

/* Requires: n >= 1
Ensures: retval >= 0 */

int fact(int n) {
int t;
if (n == 1)

return 1;
/* n>=2 */

t = fact(n-1);
/* t>=0 */

t *= n;
/* t>=0 */

return t;
}

Before the recursive call to fact(), we know that n ≥ 1 (by the precondition), that n 6= 1 (since the if
statement didn’t follow its then branch), and that n is an integer. It follows that n ≥ 2, or that n− 1 ≥ 1.

CS 161, Fall 2005, Notes 15 5

That’s very good, because it means the precondition is met when making the recursive call, and thus we’re
entitled to conclude that the return value from fact(n-1) is positive (by virtue of the postcondition for
fact()). The rest is straightforward.
In general, any time we see a function call, we have to verify that its precondition will be met. Then we are
entitled to conclude that its postcondition holds, and to use this fact in our reasoning.
If we annotate every function in the program with pre- and post-conditions, this allows modular reasoning.
This means that I can verify function f() by looking only at the code of f() and the annotations on every
function that f() calls—but I do not need to look at the code of any other functions, and I do not need
to know everything that f() calls transitively. Reasoning about a function then becomes an almost purely
local activity. We don’t have to think hard about what the rest of the program is doing.
Preconditions and postconditions also serve as useful documentation. If Bob writes down pre- and post-
conditions for the module he has built, and Alice wants to invoke Bob’s code, she only has to look at the
pre- and post-conditions—she does not need to look at or understand Bob’s code. This is a useful way to
coordinate activity between multiple programmers: each module is assigned to one programmer, and the
pre- and post-conditions become a kind of contract between caller and callee. For instance, if Alice knows
she is going to have to invoke Bob’s code, then when the system is designed Alice and Bob might negotate
the interface between their code and the contract on who is responsible for what.
There is one more major use for this kind of reasoning. If we want to avoid security holes and program
crashes, there are usually some implicit requirements the code must meet: for instance, it must not divide
by zero, it must not make out-of-bounds accesses to memory, it must not dereference null pointers, and so
on. We can then try to prove that our code meets these requirements using the same style of reasoning. For
instance, any time a pointer is dereferenced, there is an implicit precondition that the pointer is non-null and
in-bounds.
Here is an example of using this kind of reasoning to prove that array accesses are within bounds:

/* Requires: a != NULL and a[] holds n elements */
int sum(int a[], size_t n) {

int total = 0, i;
for (i=0; i<n; i++)

/* Loop invariant: 0 <= i < n */
total += a[i];

return total;
}

In this example, the loop invariant is straightforward to establish. It is true at the entrance to the first iteration
(since the first iteration ensures i= 0), and it is true at the entrance to every subsequent iteration (since the
loop termination condition ensures i < n, and since i only increases), so the array access a[i] is within
bounds.
Of course, in general, proving the absence of buffer overruns might be much more difficult, depending on
how the code is structured. However, if your code is structured in such a way that it is hard to provide a
proof of no buffer overruns, perhaps you may wish to consider re-structuring the code to make the absence
of buffer overruns more evident.
This might all look awfully tedious. The good news is that it does get a lot easier over time. With prac-
tice, you won’t need to down detailed invariants before every statement; there is so much redundancy that
you’ll be able to derive them in your head easily. In practice, good programmers might write down the
preconditions and postconditions and a loop invariant for every loop, and that will be enough to confirm

CS 161, Fall 2005, Notes 15 6

that all is well. The bad news is that, even with practice, reasoning about your code still does take time and
energy—however, it seems to be worth it for code that needs to be highly secure.
While we have presented this in a fairly formal way, in practice good programmers often do the same kind of
reasoning without bothering with the formal notation. Also, good programmers sometimes omit the obvious
parts of the invariants and write down only the parts that seem most important. Often, we think about data
structures and code in terms of the invariants it ought to satisfy first, and only then write the code.
This kind of formal reasoning can be formalized very carefully using the tools of mathematical logic. In
fact, there has been a lot of research into tools that use automated theorem provers to try to mathematically
prove the validity of a set of alleged pre- and post-conditions (or even to help infer such invariants). You
could take a whole course on the topic, but for reasons of time, we won’t go any further in this course. Our
goal was merely to show you enough to get started on your own, and maybe stir you to investigate further
on your own.
By the way, you may have noticed how useful it is to be able to “speak mathematics” fluently. Now you
know one reason why we make you take Math 55 or CS 70 as part of your computer science education.

3 Defensive Programming
Defensive programming is like defensive driving: the idea is to avoid depending on anyone else around
you, so that if anyone else does something unexpected, you won’t crash. Defensive programming is about
surviving unexpected behavior by code, rather than by other drivers, but otherwise the principle is similar.
Software engineering normally focuses on functionality: if the code is given meaningful inputs, then it
should produce useful and correct outputs. For security, we often care more about what happens when
the program is given invalid, unexpected, or ridiculous inputs: the program had better not crash, cause
undesirable side-effects, or produce dangerous outputs even when the inputs are nonsensical. Defensive
programming involves applying this idea at every interface and every security perimeter, so that each module
will remain robust even if all other modules that interact with it misbehave. The general strategy is to assume
that an attacker is in control of the inputs to your module, and make sure that nothing terrible happens.
The simplest situation is where we are writing a module M that provides functionality to a single client.
Then M should strive to provide useful responses as long as the client provides valid inputs. If the client
provides an invalid input, then M is no longer under any obligation to provide useful output; however, M
must still protect itself (and the rest of the system) from being subverted by malicious inputs.
A very simple example:

char charAt(char *str, int index) {
return str[index];

}

This function is too fragile. First, charAt(NULL, any) will cause the program to crash. Second,
charAt(s, i) can create a buffer overrun situation if i is out-of-bounds (too small or too large) for
the string. Neither can be easily fixed without changing the function interface.
Another made-up example:

char *double(char *str) {
size_t len = strlen(str);
char *p = malloc(2*len+1);

CS 161, Fall 2005, Notes 15 7

strcpy(p, str);
strcpy(p+len, str);
return p;

}

This function has many flaws:

• double(NULL) will cause a crash. Fix: test whether str is a null pointer, and if so, return null.

• The return value of malloc() is not checked. In an out-of-memory situation, malloc()will return
a null pointer and the call to strcpy() will cause the program to crash. Fix: test the return value of
malloc().

• If str is very long, then the expression 2*len+1 will overflow, potentially causing a buffer overrun.
For instance, if the input string is 231 bytes long, then on a 32-bit machine we will allocate only 1
byte, and the strcpy will immediately trigger a heap overrun.

A slightly trickier example: Consider a Java sort routine, which accepts an array of objects that implement
the interface Comparable and sorts them. This means that each such object has to implement the method
compareTo(), and x.compareTo(y) must return a negative, zero, or positive integer, according to
whether x is less, equal, or greater than y in their class’s natural ordering (e.g., strings might use lexico-
graphic ordering, say). Implementing a defensive sort routine is actually fairly tricky, because a malicious
client might supply objects whose compareTo() method behaves unexpectedly. For instance, calling
x.compareTo(y) twice might yield two different results (if x or y are malicious or misbehaving). Or,
we might have x.compareTo(y) == 1, y.compareTo(z) == 1, and z.compareTo(x) ==
1, which is nonsensical. If we’re not careful, the sort routine could easily go into an infinite loop or worse.
Here is some general advice:

• Check for error conditions. Always check the return values of all calls (assuming this is how they
indicate errors). In languages with exceptions, think carefully about whether the exception should be
handled locally or should be propagated and exposed to the caller. Check error paths very carefully:
error paths are often poorly tested, so they often contain memory leaks and other bugs.
What do you do if you detect an error condition? Generally speaking, for errors that are expected and
intended to be recoverable, you may wish to recover. However, unexpected errors are by their very
nature more difficult to recover from. In many applications, it is always safe to abort processing and
terminate abruptly if an error condition is signalled; fail-stop behavior may be easier to get right.

• Validate all inputs. Sanity-check all inputs from the rest of the program. Inputs that could have come
from the adversary (e.g., that came from a network packet) must be treated with particular caution.
Check that the input looks reasonable. It is better to conservatively limit the input to values that were
expected (even if this might cause some loss of functionality in obscure unexpected cases) than to
liberally allow everything (which might permit security holes in cases the programmer didn’t think
of).
For instance, what’s wrong with this code?

char *username = getenv("USER");
char *buf = malloc(strlen(username)+6);
sprintf(buf, "mail %s", username);

CS 161, Fall 2005, Notes 15 8

FILE *f = popen(buf, "r");
fprintf(f, "Hi.\n");
fclose(f);

Answer: If the attacker controls the USER environment variable, then he might arrange for its value
to be something like “daw; /bin/rm -rf $HOME”, and then the above code will have very un-
pleasant consequences: popen() passes its input to the shell for execution, and the shell will then
execute the command “mail daw” followed by the command “/bin/rm -rf $HOME”. The so-
lution is to validate that the username looks reasonable.1

• Whitelist, don’t blacklist. A common mistake, when validating input from an untrusted source, is to
try to enumerate bad inputs and block them. Don’t do that. That is known as blacklisting, and it is
analogous to a default-allow policy. You will inevitably overlook some patterns of dangerous inputs.
Instead, use a whitelist of known-good types of inputs, and block anything else. You’ll recognize this
as an instance of a default-deny policy, which is much safer.
For instance, if you are given a username supplied by the attacker, you might check that it matches
the regular expression [a-z][a-z0-9]* before proceeding. A sample implementation:

char *validate_username(char *u) {
char *p;
if (!u || *u < ’a’ || *u > ’z’)

die();
for (p=u+1; *p; p++)

if ((*p < ’0’ || *p > ’9’) && (*p < ’a’ || *p > ’z’))
die();

return u;
}

• Don’t crash or enter infinite loops. Don’t corrupt memory. Generally, you will want to verify that, no
matter what input you receive (no matter how peculiar), the program will not terminate abnormally,
enter an infinite loop, corrupt its internal state, or allow its flow of control to be hijacked by an attacker.
Be sure that these failures cannot happen. Trust no one. If there are any inputs to this function, validate
its inputs explicitly to avoid these cases (even if you are not aware of any caller that could provide
such bad inputs).
If availability is important, you may wish to avoid leaking memory or other resources, since enough
memory is leaked the program might cease to operate usefully. You may also want to defend against
algorithm denial-of-service attacks: if the attacker can supply inputs that lead to worst-case perfor-
mance that is far worse than the normal case, this can be dangerous. For instance, if your program that
uses a hashtable with O(1) expected time per lookup, but O(n) worst-case time, the attacker might
send packets that trigger the O(n) worst-case behavior and cause the program to freeze as it enters a
protracted computation.

• Beware of integer overflow. Integer overflow often violates the programmer’s mental model and leads
to unexpected—and hence often undesired—behavior. You might wish to verify that integer overflow
is impossible.

1Another problem is that, if the attacker can control other environment variables (e.g., PATH), then he can cause the wrong
mail command to be invoked. For instance, the attacker might arrange for a malicious binary to be installed as /tmp/mail,
set PATH to include /tmp, and then somehow cause the above code sequence to be executed. This requires validating the whole
environment.

CS 161, Fall 2005, Notes 15 9

• Check exception-safety of the code. In languages with exceptions, there are usually two kinds of
exceptions: those explicitly thrown by a programmer, and those implicitly thrown by the platform
if some runtime error is detected. For instance, a null pointer dereference, a division by zero, an
invalid cast, or an out-of-bounds array reference each trigger a runtime exception. Generally, you
should verify that your code will not throw a runtime exception under any circumstance, because such
exceptions are usually indications of unexpected behavior or program bugs. Less restrictively, one
might check that all such exceptions are handled and will propagate across module boundaries.
A famous example of a failure to verify exception-safety comes from the Ariane rocket. The Ariane
4 contained flight control software written in Ada. When the more powerful version, Ariane 5, was
developed, the same software was reused. Unfortunately, when the Ariane 5 was launched, it blew up
shortly after launch. The cause was discovered to be an uncaught integer overflow exception, which
caused the software to terminate abruptly. A certain 16-bit register held the horizontal velocity of
the flight trajectory. On the Ariane 4, it had been verified that the range of physically possible flight
trajectories could not overflow this variable, so there was no need to install an exception handler to
catch such an exception. However, the Ariane 5’s rocket engine was more powerful, causing a larger
horizontal velocity to be stored into the register and triggering an overflow exception that crashed
the on-board computers. The assumption made during the construction of the Ariane 4 was never
re-validated when the software was re-used in the Ariane 5, causing losses of around $500 million.

So far we have considered very simple cases where we only have to think about a single client. More
generally, suppose we are writing a module M that provides some functionality to multiple clients, who
each call M to benefit from its functionality. It is important for M to defend itself against malicious clients.
It is also important for M to ensure that one malicious client cannot disrupt other clients. Thus, when M is
performing some function on behalf of a client, there are two cases:

• If a well-behaved client supplies valid inputs, M must provide correct and useful results. When
M is invoked with a valid and meaningful request, M must respond correctly. This is primarily a
functionality requirement. It may also be relevant to security, because the client may be relying upon
M to do its job correctly.

• If a misbehaving client supplies invalid inputs, M does not need to provide useful service to this
client, but other clients must not be disrupted. When M is invoked with meaningless, unexpected, or
malicious input, there is no requirement that M provide a useful response to this client. However, M
must protect itself from such requests, and M must not allow its internal state to become corrupted or
harmful side effects to occur. M must maintain the consistency of its internal data structures no matter
what inputs it receives. Also, M must ensure that other clients are not disrupted by requests from a
malicious client, and that all well-behaved clients contain to receive correct and useful results.

Of course, M might in turn invoke other utility modules, relying upon them, so that M is itself a client of
those other modules. The same requirements will apply.
There is a special case where we do not have to worry about multiple clients. Suppose M computes a pure
function, with no internal state and performing no I/O, so that its output depends deterministically on its
input. In this case, we do not need to worry about one client disrupting another client or corrupting M’s
state. Thus, functional programming can simplify the task of defensive programming.
How does defensive programming relate to the use of preconditions? Of course, whenever we want to make
some assumption about the calling context, we can either express this as a precondition and leave it to the
caller to ensure it is true, or we can explicitly check for ourselves that the condition holds (and abort if it

CS 161, Fall 2005, Notes 15 10

does not). How should we decide between these two strategies? Perhaps the most sensible approach is to
use preconditions to express constraints that honest clients are expected to follow. So long as the client
meets the documented preconditions (whether formal or informal), then the module is obligated to return
correct and useful results to the client. If the client departs from the documented contract, then the module
is no longer under any obligation to return useful results, but it still must protect itself and other clients.
Thus, for interfaces exposed to clients, we might (a) use documented preconditions to express the intended
contract and (b) use explicit checking for anything that could corrupt our internal state, cause us to crash,
or disrupt other clients. For internal helper functions that can only be invoked by code in the same module,
we might not worry about the threat of being invoked with malicious inputs, and we could freely choose
between implicit checking (preconditions) and explicit checking.

4 Selecting a Programming Language
If you are lucky, you may have the opportunity to choose a programming language, libraries, operating
system, or development environment. Here is some advice for how to make a choice that is best for security.

• Pick tools that you know well. The most important advice is to know your tools well. Many security
bugs are caused by insufficient familiarity with obscure corner cases in the language, libraries, or
programming environment. It takes a long time to gain experience with a language and programming
environment; thus, it makes sense to amortize this investment by choosing tools that you know ex-
tremely well. A good test of how well you know your language is: Have you read the formal language
specification? Do you understand everything in there?

• Pick a programming platform designed for safety. A significant fraction (over 50%, by some mea-
sures) of security holes in C code are related to absence of bounds-checking in C. If you have the
chance to pick a language that provides automatic bounds-checking for all arrays and pointers, au-
tomatic detection of memory management errors, automatic detection of errors with uninitialized
variables, and so on, then it is often helpful to do so. Also, type checking can be a powerful tool to
reduce the incidence of certain kinds of programming bugs; you might choose a language that pro-
vides strong support for types. Similar comments apply to the choice of libraries and the rest of the
programming platform.
For instance, assembly language is generally a poor choice for general-purpose programming, because
it is so easy to make a devastating mistake. These days, it is widely recognized that one should use
assembly language only when it is absolutely necessary and only very sparingly, if at all. Many
security researchers are starting to feel the same way about languages like C and C++. Type-safe
languages—e.g., Java, C#, Ada, or ML—have many advantages from a security standpoint.

Of course, you will not always have the opportunity to choose the language on the basis of what is best for
security. For instance, other considerations may dominate, or you may be forced to maintain legacy code. A
corollary of the above comments is that if you are programming in a language that isn’t optimal for security,
you need to be extra careful. If you don’t know the language extremely well, it would be good to try to learn
it better, and to avoid the more obscure corners of the language and stick to the core that you know best.
If you are forced to program in a language without automatic bounds-checking, extra caution is warranted.
You may want to force yourself to stick a rigid discipline where you insert a manual bounds-check anywhere
any array or pointer operation is performed, or you may wish to write your code in a way so you can prove
(using the formal reasoning methods outlined earlier) that out-of-bounds accesses are impossible.
Here is some advice specific to C programming:

CS 161, Fall 2005, Notes 15 11

• Avoid buffer overruns. Prove that no array access, pointer dereference, or structure access can overflow
the bounds of the associated object. Make all preconditions, loop invariants, and object invariants that
are needed to prove this explicit in the code (e.g., as comments).

• Avoid undefined behavior. If you read the C standard, you will discover the special term undefined
behavior used frequently. There are many language primitives that have their own implicit precon-
dition that must be met. If the precondition is not met, undefined behavior results, which means that
the compiler is allowed to cause anything at all to happen. For instance, evaluating a[i] triggers
undefined behavior if the array index i is out of bounds; so, too, does dividing by zero, or causing any
number of other error conditions. In these cases, no promises are made, and anything might happen.
Buffer overruns are one special kind of undefined behavior, and in practice, undefined behavior may
mean that an attacker can hijack control of the program. Thus, you should be careful to ensure that
your code can never invoke undefined behavior.

• Get familiar with the C standard. The official C standard is the definitive specification of what is
guaranteed about the behavior of the language and the libraries. You should have a copy on your
bookshelf or bookmarked in your web browser. Even the best textbooks, man pages, and informal
guides occasionally get things slightly wrong2.

5 Process
Security is an ongoing process, and security must be integrated into all phases of the system development
lifecycle: requirements analysis, design, implementation, testing, quality assurance, bugfixing, and mainte-
nance.

• Test code thoroughly before deployment. Testing can help eliminate bugs. It is worth putting some
effort into developing test cases that might trigger security bugs or expose inadequate robustness. Test
corner cases: unusually long inputs, strings containing unusual 8-bit characters, strings containing
format specifiers (e.g., %s) and newlines, and other unexpected values. Manuals and documentation
can provide a helpful source of potential test cases. If the manual says that the input must or should
be of a particular form, try constructing test cases that are not of that form.
Unit tests are particularly valuable at checking whether you are doing a good job of defensive pro-
gramming. Try inputs that stress boundary conditions (integers are 0, 1, −1, 231 − 1, −231 are fun
to try). If the routine operates on pointers, try inputs with unusual pointer aliasing or pointing to
overlapping memory regions.
Automate your tests, so that they can be applied at the push of a button. Run them nightly.

• Use code reviews to cross-check each other. Good security programmers enlist others to review their
code, because they realize that they are fallible. Having someone else review your code is usually
much more effective than reviewing your own code. Bringing in another perspective often helps to
find defects that the original programmer would never found. For instance, it is easy to make implicit
assumptions (e.g., about the threat model) without realizing it. The original programmer is likely

2For instance, here is one example I recently learned about. One well-regarded C reference book states that toupper()
can be safely called on any argument of type char. This is wrong. Instead, as the C standard correctly says, it can be called
safely on arguments of type unsigned char and on the value EOF, but anything else may lead to undefined behavior. Passing
toupper() an argument of type char can lead to an out-of-bounds access and undefined behavior, on platforms where char
is a signed type. The reference book’s description was only slightly wrong, but it was wrong enough that it could have led to a
security hole.

CS 161, Fall 2005, Notes 15 12

to make the same erroneous assumption when reviewing her own code as when she wrote it, while
someone else may spot the error immediately. Knowing that someone else will review your code also
helps keep you honest and motivates you to avoid dangerous shortcuts, because most people prefer
not to be embarassed in front of their peers.

• Evaluate the cause of all bugs found. What should you do when you find a security bug? Fix it,
obviously—but don’t stop there.
First, generate a regression test that triggers the security hole. Add it to your regression test suite so
that if the bug is ever re-introduced you will discover it very quickly.
Second, check whether there are other bugs of a similar form elsewhere in the codebase. If you find
three or four bugs of the same type, it is good bet that there are more lurking, waiting to be found.
Document the pitfall or coding pattern that causes this bug, so that other developers can learn from it.
Third, evaluate what you could be doing differently to prevent similar bugs from being introduced in
the future. Does the bug reveal a misfeature in your API? If so, fix the API to prevent any further
incidence of such bugs.
You may also wish to investigate the root cause of such bugs periodically. Are there adequate re-
sources for security? Is security adequately prioritized? Was the design well-chosen? Are you using
the right tools for the job? Are deadlines too tight and programmers feeling too rushed to put adequate
care into security concerns? Does it indicate some weakness in the process you use? Do engineers
need more training on security? Should you be doing more testing, more code reviews, something
else? Even if you fix each security bug as they occur, if you don’t fix the root cause that creates the
conditions for such bugs to be introduced, then you will continue to suffer from security bugs.

CS 161, Fall 2005, Notes 15 13

