
CS 161 Computer Security
Fall 2005 Joseph/Tygar/Vazirani/Wagner Notes 13

Topic: Software security; Common implementation flaws
The purpose of the next few lectures is to teach you about software security. Even if we’ve got the perfect
system design, specification, and algorithms, there can still be vulnerabilities introduced when it comes time
to implement.
We will start by showing you some common implementation flaws. Because a lot of our security-critical
applications have been written in C, and because C has peculiar pitfalls of its own, many of these examples
will be C-specific. However, implementation flaws can occur at all levels: in improper use of the program-
ming language, the libraries, the operating system, or in the application logic. By far the most common class
of implementation flaw is the buffer overrun, so we will start there.

1 Buffer overruns
C is essentially a portable kind of assembler: in many ways, the programmer is exposed to the bare machine.
In particular, C does not provide any sort of automatic bounds-checking for array or pointer accesses. In
the case of a buffer overrun vulnerability (sometimes also called a buffer overflow), out-of-bounds memory
accesses are used to corrupt the intended behavior of the program and cause it to run amok.
Let us start with a simple example.

char buf[80];
void vulnerable() {

gets(buf);
}

In this example, gets() reads as many bytes of input as are available on standard input, and stores them
into buf[]. If the input contains more than 80 bytes of data, then gets() will write past the end of buf,
overwriting some other part of memory. This is a bug. Obviously, this bug might cause the program to crash
or core-dump if we are unlucky, but what might be less obvious is that the consequences can be far worse
than that.
To illustrate some of the dangers, we modify the example slightly.

char buf[80];
int authenticated = 0;
void vulnerable() {

gets(buf);
}

Imagine that elsewhere in the code is a login routine that sets the authenticated flag only if the user
proves knowledge of a super-secret password, and other parts of the code test this flag to provide special

CS 161, Fall 2005, Notes 13 1



access to such users. We can see the risk. An attacker who can control the input to this program can
cause buf to be overrun, so that data is written after the end of buf. Assuming the compiler stores the
authenticated variable in memory immediately after buf, then the authenticated flag will be
overwritten by this data. Consequently, the attacker can arrange to make the authenticated flag become
true by supplying, say, 81 bytes of input, where the 81st byte takes on any non-zero value. This would give
the attacker special access even though the attacker doesn’t know the secret password, a security breach.
We could conjecture a more serious version of this exploit, Suppose the code looked something like this:

char buf[80];
int (*fnptr)();
...

Here we have a function pointer fnptr, which we assume is invoked somewhere else in the program. Then
the attacker could cause more serious harm: he could overwrite fnptr with any address of his choosing,
and thereby cause program execution to be re-directed to any desired memory address. A crafty attacker
might first arrange to introduce a malicious sequence of machine instructions somewhere in the machine’s
address space, and then use the buffer overrun to write into fnptr the address of the malicious code, so
that when fnptr is next invoked, the flow of control is re-directed to the malicious code. Introduction of
malicious code isn’t very hard, if the attacker controls the inputs to the program: since those inputs are likely
stored into buffers as they are read in, the attacker could send the malicious code as data in any part of the
input, and then arrange for fnptr to point to the appropriate input buffer. This is a malicious code injection
attack.
This demonstrates that, in some cases, an adversary may be able to take advantage of a buffer overrun bug
to seize control of the program. This is very bad. For instance, consider a web server that receives requests
from clients across the network and processes them. If the web server contains a buffer overrun in the code
that processes such requests, a malicious client would be able to seize control of the web server process. If
the web server is running as root, the attacker has gained access to a root account on the system, and the
attacker can leave a backdoor to regain access later; the system has been “owned.” It is no surprise that such
buffer overrun vulnerabilities and malicious code injection attacks are a favorite method that worm writers
like to use to spread infection.
This illustrates one way that buffer overrun bugs might be used to subvert system security. At this point,
though, the skeptical might be inclined to suspect that the conditions required to exploit buffer overruns in
this particular way are rare. This seems to be more or less true1. However, hackers have discovered much
more effective methods of malicious code injection, which we shall illustrate next.
First, we have to back up and go over some background on how memory is layed out in a typical C program.
Memory usually contains: (a) the text region, executable code of the program to be executed; (b) the heap,
where dynamically allocated data is stored; (c) the stack, where local variables are stored. The heap grows
and shrinks as objects are allocated and freed; the stack grows and shrinks as functions are called and return.
To allow them to use memory as efficiently as possible, they are usually layed out like this:

text region heap · · · stack
0x00..0 0xFF..F

Here the text regions starts at smaller-numbered memory addresses (e.g., 0x00..0), and the stack region ends
at larger-numbered memory addresses (0xFF..F). When a function is called, a new stack frame is pushed onto

1However, it is worth noting that the famous Internet worm (the first of its kind) spread using several attacks, one of which used
a buffer overrun to overwrite an authenticated flag in in.fingerd, the network finger daemon.

CS 161, Fall 2005, Notes 13 2



the program stack. This stack frame contains space for all the local variables to be used by that function, and
anything else the compiler wants to store assorted with this function execution. On Intel (x86) machines,
pushing frames on the stack causes the stack to grow “down” (towards smaller memory addresses). Usually
there is a special register, called the stack pointer (SP), that points to the beginning of the current stack
frame. Thus, the stack extends from the address given in the SP until the end of memory.
It’s also worth saying something about how the CPU executes instructions. There is a special register, called
the instruction pointer (IP), that points to the next machine instruction to be executed. When executing
straight-line code, the machine reads the instruction pointed to by IP, executes that instruction, and then
increments the IP. Jump and procedure-call instructions cause the IP to be updated differently. A jump in-
struction causes the IP to be updated to whatever value is specified by the jump instruction. A call instruction
is special: it pushes the current value of IP onto the stack (this will be called the return address), and then
branches to the beginning of the function to be called. Usually the compiler inserts a function prologue at
the beginning of the function body, so it is the first thing to be executed when the function is called. The
prologue pushes the current value of SP on the stack, and then allocates space on the stack for local variables
by decrementing the SP by some appropriate amount. When the function returns, the old value of the SP is
retrieved from the stack, then the return address is retrieved, the stack frame is popped from the stack, and
execution continues starting from the return address.
After all that background, we’re now ready to see how a stack smashing attack works. Suppose the code
looks like this:

void vulnerable() {
char buf[80];
gets(buf);

}

When vulnerable() is called, a stack frame is pushed onto the stack. It will look something like this:

buf saved SP ret addr caller’s stack frame · · ·

Notice that if a too-long input is supplied, then the saved SP and subsequently the return address on the
stack will be overwritten. The stack smashing attack now becomes apparent. First, the attacker stashes
a malicious code sequence somewhere in the program’s address space (e.g., using techniques previously
mentioned). Next, the attacker provides a carefully-chosen 88-byte sequence, whose last four bytes are
chosen to hold the address of this malicious code sequence. Of course, those last four bytes will overwrite
the return address saved on the stack. When vulnerable() returns, the CPU will load the return address
stored on the stack and transfer control to that address—thereby handing control over to the attacker’s
malicious code.
This barely begins to cover the full breadth of buffer overrun exploit techniques. The canonical reference
on stack smashing exploits is the essay “Smashing the Stack for Fun and Profit”, written by Aleph One in
November, 1996. There are clever methods for constructing the malicious code sequence, for determining its
address, and for making the exploit work even when you don’t know the exact address where the malicious
code is stored in the victim’s address space. And that’s just stack smashing. Since then, attackers have
discovered a vast array of subtle and sneaky ways of exploiting buffer overrun bugs, even when the buffer
is stored on the heap instead of on the stack, even when the program code only allows to overflow the
buffer by one byte, even when the characters written to the buffer are limited (e.g., limited only to uppercase
characters), and under all sorts of other restrictive conditions where one might initially think that the buffer
overrun is harmless.

CS 161, Fall 2005, Notes 13 3



On paper, the subject of buffer overrun exploitation may appear mysterious, too tiring for anyone to bother
with, or incredibly hard to exploit in the wild. In practice, it is none of the above. You will see in a future
homework exercise that it’s actually not all that hard to exploit such a bug. And worms exploit these bugs all
the time; for instance, the Code Red II worm (mentioned in the introduction to have compromised a quarter
million machines) exploited a buffer overrun in IIS (Microsoft’s web server).
Historically, many security researchers have underestimated the opportunities for obscure and sophisticated
attacks. It is an easy mistake to make. Over time, though, we have learned is that if your program has a
buffer overrun bug, it is wisest to assume that the bug is exploitable and that an attacker could take control
of the program. Buffer overruns are bad stuff—you don’t want them in your programs.

2 Format string vulnerabilities
Here is another example of a C-related vulnerability:

void vulnerable() {
char buf[80];
if (fgets(buf, sizeof buf, stdin) == NULL)

return;
printf(buf);

}

Do you see the bug? The last line should have used printf("%s", buf). Instead, it wrongly passed
buf as the format string to printf(). Notice that if buf contains any % format-specifiers, printf()
will look for arguments that aren’t there, and may crash or core-dump the program when it follows an invalid
pointer. But actually, it’s worse than that. As you may have begun to suspect by now, any time that a program
crashes or core-dumps, it is worth looking closely to see whether there is something more serious possible.
Let’s look.
First, we can see that it may be possible for an attacker to learn information about the contents of the
function’s stack frame. By specifying a string like "%x:%x", an attacker who can see what is printed has
the chance to view the first two words of stack memory.
In fact, we can refine this a bit. Suppose we supply a string like "%x:%x:%s". What does this do? It prints
out the first two words of stack memory, then treats the next word of stack memory as a memory address
and prints out everything at that address until the first ’\0’ byte. Where does that last word of stack
memory come from? Well, it comes from somewhere in the stack frame for printf(), or, if we supply
enough %x specifiers to walk past the end of printf()’s stack frame, then it comes from somewhere in
vulnerable()’s stack frame.
Ah-hah! Now we are on to something. Notice that buf is stored in vulnerable()’s stack frame, and
the attacker can control the contents of buf, so this means the attacker can control part of the contents of
vulnerable()’s stack frame—but that’s exactly where the %s specifier is getting its memory address
from. So, the attacker can store a memory address somewhere in buf, then arrange that when the %s spec-
ifier reads a word from the stack to get a memory address, it will receive the memory address he thoughtfully
put there for it. The exploit will involve supplying a string like "\x04\x03\x02\x01:%x:%x:%x:%x:%s".
If the attacker has arranged to have just the right number of %x specifiers, then the address that is read will
be read from the first word of buf, which he has arranged to contain the value 0x01020304 (it looks like
it has been reversed, but that is because values are stored in little-endian format on x86 machines). We can
see that in this way, the attacker can pick any desired memory address, and read out the contents of memory

CS 161, Fall 2005, Notes 13 4



starting at that address. Thus, an attacker can exploit a format string vulnerability to learn any secrets stored
in the victim’s address space—cryptographic keys, passwords, they’re all potential targets.
It gets worse than that. Thanks to an obscure format specifier (%n), it is possible for an attacker to write
any desired value to any desired address in the victim’s memory, if the victim has a format string bug. I
won’t bother you with the details of how it is done; suffice it to say that it is possible. This is now enough
to allow attackers to mount malicious code injection attacks. For instance, the attacker can introduce a
malicious code sequence anywhere into the victim’s memory, then use a format string bug to overwrite a
return address on the stack (or a function pointer) so that it now points to the beginning of the malicious
code.
Consequently, any program that contains a format string bug can usually be exploited by the attacker to take
control of the victim program and all privileges it has been granted on the target system. Format string bugs
are, like buffer overruns, nasty business.

3 Integer overflow and implicit cast vulnerabilities
What’s wrong with this code?

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

Here’s a hint. I’ll show you the prototype for memcpy():

void *memcpy(void *dest, const void *src, size_t n);

If that isn’t enough, perhaps I should show the definition of size_t:

typedef unsigned int size_t;

Do you see it now? Elementary, my dear Watson! If the attacker provides a negative value for len, then the
if statement won’t notice anything wrong, and we’ll execute memcpy() with a negative third argument—
but then the third argument will be implicitly cast to an unsigned int, whence it becomes a very large
positive integer. This means that the memcpy() copies a huge amount of memory into buf, far more than
there is space for, a buffer overrun.
This is sometimes known as a signed/unsigned or an implicit casting bug. This kind of bug is nasty, because
it can be hard to spot unless you know the language and libraries well. The C compiler doesn’t usually
give any warnings when there is a type mismatch between signed int and unsigned int; it silently
inserts an implicit cast, with the programmer none the wiser.
Here is another example. What’s wrong with this code?

CS 161, Fall 2005, Notes 13 5



size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);
...

Looks ok from a buffer overrun standpoint, since we’ve allocated more than enough space to hold what we
read in (with 5 bytes to spare). No signed/unsigned problems here, since every integer in sight is unsigned.
If you look more closely, though, you will see that the expression len+5 can overflow if len is large
enough. For instance, if len = 0xFFFFFFFF, then the value of len+5 is 4 on most platforms. In other
words, we might allocate a 4-byte buffer and then proceed to read a heckuva lot more than 4 bytes into the
buffer. That’s a buffer overrun for you right there.
This illustrates that you’ve got to know the semantics of your programming language very well, because
there are usually pitfalls for the unwary.

4 TOCTTOU vulnerabilities
Here’s one for you that isn’t language-specific.

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only allowed to regular files; nice try!");
return -1;

}
return open(path, O_RDONLY);

}

This code is trying to open a file, but only if it is a regular file (e.g., not a symlink, not a directory, not a
special device). On Unix, the stat() call is used to extract meta-data about the file, including whether it
is a regular file or not. Then, the open() call is used to open the file.
The flaw in the above code is that it assumes the state of the filesystem will remain unchanged between the
stat() and the open(). However, this assumption is not justified. In fact, an attacker might arrange
to change the file referred to by path in between the stat() and open(). If path refers to a regular
file when the stat() is executed, but refers to some other kind of file when the open() is executed, this
bypasses the check in the code. If that check was there for a security reason, the attacker may be able to
subvert system security.
This is known as a time-of-check to time-of-use (TOCTTOU) vulnerability, because the meaning of path
changed from the time when it is checked (the stat()) and the time when it is used (the open()). In Unix,
this often comes up with filesystem calls, because system calls are not atomic and the filesystem is where
most long-lived state is stored. However, this is not specific to files. In general, TOCTTOU vulnerabilities
can arise anywhere that there is mutable state that is shared between two or more entities. For instance,
multi-threaded Java servlets and applications are at risk for this kind of flaw.

CS 161, Fall 2005, Notes 13 6



5 Many more
This is not, by any means, intended to be a complete list of implementation flaws. We’ve only scratched
the surface. However, hopefully this illustrates some of the most prevalent examples and shows what can
go wrong if implementations contain defects. If it makes you just a bit more cautious about how you write
code, good! In future lectures, we will discuss what you can do to prevent (or reduce the likelihood) of these
kinds of flaws, and to improve the odds of surviving any flaws that do creep in.

CS 161, Fall 2005, Notes 13 7


