
CS 161 Computer Security
Fall 2005 Joseph/Tygar/Vazirani/Wagner Notes 30

1 Isolation
The topic for today is isolation. A program is isolated if it cannot affect other programs on the system. Thus,
isolation refers to an inability to causally influence other programs on the system.
Isolation is related to some topics we have seen before, such as access control. One difference is that
access control is a mechanism for enforcing some security policy (a means to an end), whereas isolation is
a security goal (the end itself). Isolation is also related to previous lectures on virtual memory and memory
protection. The difference is that virtual memory seeks to provide only memory isolation between processes
(each process receives a disjoint address spaces and cannot affect other processes through memory reads and
writes). Memory protection does not prevent other kinds of influence, such as opening an IPC connection
from one process to another. When we want to isolate a process, we want to isolate against all influences,
so memory protection alone is not enough.
What are the applications of isolation? Here are a few.

• I run across a cool piece of software that will draw dancing pigs on the screen, and I want to download
it and try it, but I don’t know whether I can trust the developer. It would be great to be able to run it
in an isolated environment, where it cannot harm the rest of my machine even if it contains malicious
code or bugs.
This is often known as the sandboxing problem. We want to give the downloaded software its own
little sandbox where it can do whatever it wants, as long as it doesn’t escape the sandbox. If it tries to
do anything disruptive, the effect will be limited to its sandbox, so the worst that can happen is it will
disrupt itself.

• I want to display a MS Word file that someone emailed me, but I don’t want it to be able to infect my
machine with a macro virus. It would be great if I could run an sandboxed instance of MS Word to
view just this document, with no fear that it will trash my other Word documents.

• I’m designing a complicated software application. Following the principle of least privilege, I want
to decompose the application into multiple pieces. Each piece should be isolated from the others, so
that if one piece is penetrated, the integrity of the others will be preserved.

Soon I will start to show you a number of different ways to try to enforce a policy of isolation, but first let’s
explore the software decomposition issue a bit more to understand some of the requirements.

2 Decomposing Software for Security
I’ve talked before about the relevance of modularity to application security, but let me now show you how
to select a decomposition of your system into modules that will be helpful for security.

CS 161, Fall 2005, Notes 30 1

I’ll work from a case study: building a secure mailer. At one point, one of the most popular mail daemons
was sendmail, an application written by Eric Allman while he was a staff member here in Berkeley EECS.
Sendmail is a large, monolithic application, consisting over 100K lines of C code. It runs as root. Unfortu-
nately, it has been plagued by security problems—and because it runs with root privilege, each one of those
security holes exposes the entire machine to mischief by the intruder.
qmail is a secure mailer written by Dan Bernstein, partly in response to these problems. qmail is now the
second most popular mail daemon on the Internet. Interestingly, in 1997 Bernstein offered a $500 prize to
the first person to find a serious security hole in his system. The $500 still remains unclaimed. Let’s see
why qmail has fared so much better than sendmail.
What does a SMTP mail daemon need to do?

• It receives incoming email via SMTP connections to port 25 on this machine. Therefore, the mail
daemon has to listen for connections to port 25 on this machine and be prepared to receive email from
other hosts.

• It receives email submissions from other programs running on this host. Therefore, it has to be
prepared to be invoked by other programs who want to submit mail for transmission elsewhere.

• When it receives an email message, it has to queue the message, determine where to route this message
(it may require delivery to a user on this host, or it may be forwarded the SMTP daemon on some other
host), and deliver the email message to a local user if necessary.

Internally, qmail is broken down into separate programs that each perform a simple task. Here are the
programs that make up qmail (see Figure 1):

• qmail-smtpd: This program listens for incoming network connections on port 25. It speaks the SMTP
protocol, gathers up the email message submitted to this host, calls qmail-queue to add the message
to the queue, and writes a log file. qmail-smtpd has its own user account (qmaild), and runs in the
background with the permissions of that user account.

• qmail-inject: This program is executed by local programs that want to submit email messages for
transmission. It accepts a message on stdin and then calls qmail-queue to add the message to the
queue. qmail-inject runs with the permissions of whatever user invokes it.

• qmail-queue: This program reads a message from its input and appends it to the mail queue. The
queue directory is owned by a special user account (qmailq), and qmail-queue is a setuid program, so
that when it is executed it takes on the permissions of that special account. qmail-queue is the only
program that can write the queue directory on the file system, and it has the responsibility of ensuring
that the queue data structure on disk is always consistent and cannot be corrupted.

• qmail-send: This program runs in background, waiting for the queue to become non-empty. Whenever
the queue contains a message, qmail-send reads a message from the queue, determines whether it
should be routed to a local user or to a remote host, and executes either qmail-lspawn or qmail-rspawn
accordingly. qmail-send also runs with the same permissions as qmail-queue (namely, as user qmailq).

• qmail-lspawn: This program accepts an email message on its input, looks up the user ID who this
message should be delivered to, becomes that user (giving up all other permissions it once had, and
now executing with the permissions of that user ID), and then executes qmail-local. qmail-lspawn
is a setuid-root program, so that when it is executed it initially takes on root permissions (which are
needed so that it can become the appropriate user).

CS 161, Fall 2005, Notes 30 2

qmail−smtpd qmail−inject

qmail−lspawn

qmail−local

qmail−rspawn

qmail−remote

qmail−queue

qmail−send

to local user

from local userfrom network

to network

Figure 1: An overview of the qmail architecture.

• qmail-local: This program actually delivers the email message by appending it to the user’s mailbox
file (or by passing it off to a filter, if so specified by the user’s ˜/.forward file). qmail-local runs
with the permissions of the user who is receiving the email.

• qmail-rspawn: This program accepts an email message as input, determines the remote host who this
message should be transmitted to, and invokes qmail-remote to actually transmit it to that host. It is
setuid to its own special user ID (qmailr).

• qmail-remote: This program accepts an email message as input, opens a network connection to port
25 on that remote host, and speaks the SMTP protocol to deliver the message to the remote SMTP
daemon. It runs with the permissions of the invoking user (qmailr).

• qmail-start: This program starts up all the long-running processes, with the appropriate user IDs.

Why does qmail use so many programs?

• This lets qmail minimize the amount of code running as root. All of sendmail runs as root. In contrast,
in qmail, only qmail-start and qmail-lspawn run as root. Security holes in other programs do not give
the intruder root-level access to your machine; they’re still worth avoiding, but the harm is reduced.
This is an instance of the principle of least privilege.
Notice how this relies on a certain level of isolation between the qmail programs. If the non-root
programs could tamper with the memory of the root programs (for instance), this property would be
worthless. Isolation lets us cordon off the root code from the rest of the application.

• It reduces the amount of code that is security-critical. For instance, qmail-inject can only be invoked
by local users. If it has a buffer overrun vulnerability, that’s unfortunate, but at least there is no direct
way for a remote attacker to exploit this buffer overrun.

• Logically different functions are separated into mutually distrusting programs. No program trusts data
from the others. Thus, even if some subset of the programs are broken, so that they can be completely
controlled by an intruder, the intruder still can’t attack the other programs or take over your system.

CS 161, Fall 2005, Notes 30 3

(Exception: If an intruder compromises qmail-lspawn, you’re hosed, because qmail-lspawn runs as
root.) For instance, even if the attacker manages to gain control of qmail-smtpd, qmail-inject, qmail-
local, qmail-rspawn, and qmail-remote, it still cannot gain access to the queue files, because the queue
files are only accessible to user qmailq, and only qmail-queue and qmail-send run with the permissions
of that user.
Notice how this relies on isolation between the programs. If one program could take control of another
qmail program (say, by issuing debugging commands, or by tampering with its binary executable
on disk, or by any of numerous other methods), then we would be unable to provide this level of
protection.

• Each program is extremely simple. The largest is qmail-send, which consists of 1600 lines of C code.
All of the others use less than 800 lines of code.

In short, qmail uses many little programs because this is the easiest way to get isolation in Unix. Each pro-
gram is (at least partially) isolated from all the others. And isolation is what lets us meaningfully decompose
the application into “watertight compartments” that minimize the spread of damage. In effect, it provides a
firewall between each module of the application.
These examples also make clear a more fundamental point about sandboxing and isolation: pure isolation is
usually too strict. Much more commonly, we need to combine isolation with controlled sharing. Isolation is
a starting point that is analogous to the deny-all starting point of a default-deny policy. Controlled sharing is
about allowing limited escape routes out of the sandbox, so that one can interact usefully with the sandboxed
application (hopefully without exposing ourselves to attack). In the case of qmail, the controlled sharing
between the qmail programs occurs primarily through explicit communication channels between pairs of
programs.
Let’s try another example to help see how to decompose applications for security. We’ll design a software
architecture for a simple web service that converts files from one format to another—say, from MP3 to OGG.
This web service needs to accept incoming connections to port 80, receive the contents of a file, perform
some complicated computations to translate the file into the new format, and then send the result back out
over the network. Thus, we might break this down into two pieces: the master, a process that receives files
on port 80, invokes the slave with the contents of this file, and sends the slave’s output over the network;
and the slave, which takes as input a byte array, interprets its input as an MP3, transforms the MP3 into
OGG format, and produces as output another byte array containing the OGG data. Notice that the slave is
computing a deterministic function of its input, and does not need any permissions at all (not to read files,
or to access the network, or to do anything else at all except compute). Thus, we can arrange that all the
complicated code is sandboxed in a process that cannot do anything at all but pass bytes back and forth to
the master. Consequently, if that complicated MP3-to-OGG code is buggy, the worst that can happen is that
people will receive incorrect or bogus OGG files, but no harm can happen to our machine.
Here’s another example for you to ponder. You’re writing a web browser. You want to decompress a file
that was received from across the network, but the decompression program looks fairly complex and you’re
not 100% sure whether you can trust it. How do you structure your application to minimize trust in the
decompressor? (This is an example with some historical merit. In 2002, it was discovered that any program
that used versions of the zlib decompression library dating from Feb 1998–Mar 2002 were vulnerable to a
code injection exploit.)
Today, this kind of software design is not especially common, perhaps because common operating systems
(including Unix and Windows) don’t make it very easy to get the kind of isolation needed. Nonetheless, as
we’ve seen, there are many applications where sandboxing and isolation would be very useful. The goal of

CS 161, Fall 2005, Notes 30 4

a secure sandbox is that it should be inescapable: even if the program running in the sandbox is malicious
(or controlled by an intruder), that program should not be able to escape the sandbox. So, how can we build
a secure sandbox? How can we enforce isolation guarantees? The rest of this lecture will discuss several
techniques for doing exactly this.

3 Access Control
The most obvious way to build a sandbox is to create a new user account, install the sandboxed program in
this account, log in as that user, and run the program. This effectively uses the operating system’s access
control mechanism to control what the program can do. As a generalization, we could use any other way at
our disposal to limit the permissions available to the sandboxed program to the minimum needed to set up
an isolated sandbox.
The problem with this approach is that, in most of today’s operating systems, the access control mechanism
is primarily focused on protecting files. For instance, in Unix any program can create a new network
connection and can run a server on any local port greater than 1024. Moreover, there is no way to remove
this privilege. In other words, not only does Unix have a “default allow” policy when it comes to creating
network connections, but there is not even any way to deny a process these privileges. Another difficulty is
that, on a Unix machine, many files are world-readable, which corresponds to a “default allow” policy, and
we would need to arrange that sandboxed programs do not needlessly receive access to those files.
This makes it hard to build a secure sandbox. For instance, a malicious program running in the sandbox
could create a network connection to attack other machines, to spread a worm, or to send spam that looks
like it came from my machine. If my host is located behind a firewall, the malicious program can scan and
attack other machines behind the same firewall, which is something that a remote attacker would not be
able to do on his own. It might be able to steal a copy of the /etc/passwd file on your machine and email it
through an anonymous remailer back to the intruder, thereby revealing the names of all users on the system.
Notice that qmail essentially uses this strategy to build its sandbox. Therefore, its isolation guarantees are
actually slightly weaker than mentioned before. If an intruder manages to gain control of one of the qmail
programs, the intruder is not entirely isolated—there are some unfortunate things the intruder can do (such
as attacking other hosts on the same intranet). This is a limitation of the isolation strategy that qmail uses;
unfortunately, it would be difficult for qmail to do much better while remaining portable.

4 System Call Interposition
One solution is to use interposition on the system call interface. In other words, we place a sandbox enforcer
between the sandboxed application and the operating system, and have the enforcer mediate all system call
requests. When the sandboxed application tries to issue a system call, that syscall is actually re-directed to
the enforcer, and the enforcer is given the chance to approve or deny the syscall request according to the
arguments to the syscall. This provides a way to extend the operating system’s access control policy without
modifying the OS itself.
Notice the crucial property of system calls is that, if we set up things appropriately, the sandboxed applica-
tion cannot affect anyone else without calling a system call. Consequently, interposing on the system call
interface is sufficient to ensure complete mediation.
How does the enforcer decide which system calls to allow? That depends on our sandboxing policy. Here
are some example policies.

CS 161, Fall 2005, Notes 30 5

• Consider the MP3-to-OGG example given earlier, where we wish to allow the sandboxed slave to
perform pure computation and nothing more. In this case, we can deny almost all system calls. To
allow the sandboxed slave to receive input and produce output, we start it up with file descriptors
0 and 1 (representing stdin and stdout) connected to the master, and we allow the slave to perform
read() and write() system calls—but nothing else. Note that since the slave cannot call open()
or connect(), it cannot open files or network connections.

• Suppose we want to run the Adobe Acrobat PDF viewer in a sandbox, so that any security holes in
it cannot harm the rest of the system. We might allow the sandboxed Acrobat to connect() to
port 6000 on localhost (so that it can open a window on our X Windows display) and to open()
or otherwise manipulate any file under ˜/.acrobat (so that it can maintain its preferences). We
might also allow it to freely call read() or write() (since these will only do anything useful
on an open file descriptor, and the rest of the policy limits which file descriptors can be opened).
This is appealingly simple—but then reality intervenes. Acrobat loads dynamic libraries, so we
need to allow it to open() various libraries for reading and mmap() them into memory. It opens
/usr/lib/locale to determine what language to use, so we have to allow opening that file for
reading as well. It uses signals, so we have to allow various signal-related syscalls. It uses threads, so
we have to let it spawn new processes, and we have to make sure to apply system call interposition to
those processes as well. The sandboxing policy needed is surprisingly complex. But, interestingly, it
is possible to successfully sandbox many common programs in this way, after some configuration of
the policy.

This might sound fairly simple, but there are some subtle pitfalls here. It is very easy to end up with
TOCTTOU vulnerabilities, where the meaning of the system call when it is inspected by the enforcer is
different from its meaning when it is actually executed by the OS kernel. Here are two examples:

• The open() system call’s first argument is a pointer to a filename. If we pass this pointer to the
enforcer, and then have the enforcer read the filename from the sandboxed program’s memory, then a
malicious program could arrange for this filename to change after it has been validated by the enforcer
but before the OS executes the open() call. One solution to this is to have the OS copy the filename
into kernel memory, and then copy that filename to the enforcer.

• When the program calls open("foo"), the current working directory affects precisely which file
gets opened. If the sandboxed program is multi-threaded or running on a multi-processor (SMP) ma-
chine, it might be able to change its working directory between the time when the enforcer validates
the open() and when it is executed. For instance, suppose the sandboxed program starts within
the ˜/.acrobat directory, calls open("key", O_RDONLY), and then changes its working di-
rectory to ˜/.ssh2 after the open() call is approved and before it is executed. If the sandboxed
program wins the race condition, it gains the ability to read ˜/.ssh2/key—even if that was pro-
hibited by the sandboxing policy.

The latter example is representative of a more general problem with shadow state. The OS maintains some
state for each running process, such as its current working directory. To make security decisions, the enforcer
has to independently maintain its own copy of this state (e.g., by observing all chdir() system calls). If
the two copies of state get out of sync, then the enforcer may allow some system calls that were intended to
be prohibited by the sandboxing policy. This is a general problem any time you try to interpose a reference
monitor on an interface where the meaning of a call depend on some state or context not made manifest in
the arguments of the call.

CS 161, Fall 2005, Notes 30 6

One approach to dealing with this is to have the enforcer virtualize the operating system interface. Rather
than merely passively observing system calls and approving or denying them, the enforcer might receive
system calls, emulate what an operating system might do upon receiving that system call, and respond to
the sandboxed program accordingly. The emulation process might require the enforcer to make its own
system calls to the underlying operating system. Thus, the sandboxed application thinks it is running on
top of a real operating system (when actually it is only running on an emulated OS, as implemented by the
enforcer); to the sandboxed app, the enforcer implements the same interface that an OS would, while to
the real OS the enforcer just looks like any other process. One consequence is that all of the state related
to the sandboxed process would be maintained by the enforcer. For instance, when the sandboxed process
issues a chdir() system call, the enforcer updates an entry listing the working directory for the sandboxed
process, and then returns “Success” to the sandboxed process without passing the chdir() syscall on to
the real OS. When the sandboxed process issues a open("foo") syscall, the enforcer might translate
this into open("cwd/foo") where cwd is taken from the enforcer’s records of the sandboxed process’s
current working directory.
There has been detailed research into system call interposition. There are many interesting details that I’ve
omitted, but this gives you some idea of how these techniques tend to work. If you’re interested in more
details, you can read about tools such as Systrace, Janus, and Ostia.
Question for thought: How could you use system call interposition to make qmail more bullet-proof?

5 Physical Isolation
Another simple strategy for building a secure sandbox is to run the sandboxed program on a physically
isolated machine. For instance: We drive down to Fry’s, buy a cheap new machine, and install and run
the sandboxed program on this standalone machine. When we’re done, we can reboot and reformat the
dedicated machine and reuse it to run another sandboxed program.
In general, physical isolation is often a good way to achieve isolation. If I take a dedicated machine and
physically separate it from everything else, I can be pretty confident that nothing can escape the sandbox. If
the dedicated machine doesn’t have any wires connecting it to anything else, it probably can’t communicate.
(Ok, I need to be wary of wireless networking, so perhaps I should buy a laptop, disconnect the power cord
so it runs off its battery, and place it in a Faraday cage. You get the idea.) Marcus Ranum once wrote that
ultimate high-assurance firewall could be installed using a pair of wirecutters, and he was only half-joking.
The obvious problem with physical isolation is that it can be expensive: you have to buy a dedicated machine
for every program you want to sandbox. Still, it can be useful in some settings. For instance, the military
has long used a strategy like this to provide intelligence analysts with access both to the outside Internet
(where classified material is forbidden) and to the military’s internal SIPRNET (a private network that
carries classified data). Each analyst receives two machines sitting on their desk: one is connected to the
Internet, one to the SIPRNET, and they are not connected to each other.
Even if it is not very practical, it turns out that physical isolation is a very useful mental metaphor for thinking
about the design of secure systems. When it comes time to decompose an application into multiple pieces, I
often imagine executing each module on its own machine, and then connecting up each pair of modules that
must communicate by a point-to-point wire between the corresponding computers. This makes explicit all
causal connections between the modules, so I don’t forget any interactions.

CS 161, Fall 2005, Notes 30 7

6 Virtual Machines
If real machines are too expensive, one solution is to use a virtual machine. A virtual machine is a software
application that emulates the behavior of a physically separate machine. Some well-known examples of
virtual machines include VMWare, Virtual PC, QEmu, and Bochs.
How does a virtual machine work? The full details are too complicated for this course, but here is a brief
introduction. Imagine building an x86 emulator: a program that takes as input an x86 binary (which is just
a sequence of x86 instructions) and interprets the effect those would have entirely in software. Thus the
emulator maintains (in software) the emulated state of an x86 CPU. The only tricky question is what to do
when the emulated program tries to do I/O: say, to read a sector from the hard disk. What a virtual machine
does is to also emulate the behavior of physical devices as well. For instance, if I install VMWare on Linux
and use VMWare to emulate some x86 program, then VMWare might set aside a 100MB file on my Linux
filesystem to represent the state of an emulated hard drive with 100MB of capacity. When the x86 program
tries to read or write a sector to disk, VMWare translates that into a read or write to the 100MB file, issuing
an appropriate syscall to Linux to perform that operation. When the x86 program tries to write to its screen,
VMWare might translate that into writing some pixels on a window on my Linux desktop. As described so
far, this emulation strategy would incur a tremendous performance slowdown, but sophisticated techniques
have been developed for running emulated programs at almost full speed.
Virtual machines give us a way that a single physical computer can simulate the presence of dozens of
computer. Consequently, virtual machines give us all the benefits of physical isolation, but without having
to buy lots of hardware from Fry’s. For instance, if I want to run mobile code of unknown provenance, I
might start up a virtual machine and execute the mobile code within the virtual machine, confident that the
mobile code cannot cause any lasting harm to my physical desktop. For instance, I could delete all state
associated with the virtual machine after running the mobile code, preventing it from having any lasting
effect on my files and my machine.
Virtualization is a powerful technique. We have seen how virtual memory virtualizes the memory abstraction
(providing each process with the illusion that it has its own RAM and its own address space); how system
call interposition can virtualize the operating system syscall interface; and now how virtual machines can
virtualize the hardware interface.

7 Interpreted Code
As the virtual machine example might illustrate, interpreted languages can be used for sandboxing. An in-
terpreter is just a big loop that repeatedly decodes and executes a sequence of instructions in some language.
Perhaps the simplest example of this comes from combinatorial circuits. Recall that any stateless determin-
istic computation can be implemented as a combinatorial circuit. To put it another way, given any boolean
function f : {0,1}n → {0,1}, we can find a combinatorial circuit that computes f . In this context, a com-
binatorial circuit is a network of gates (e.g., AND, OR, NOT) that has n inputs, 1 output, and no cycles
or memory. When a computation is expressed as a combinatorial circuit, it is very easy to sandbox this
computation: we can simply evaluate the circuit in software. We know that this computation cannot perform
any I/O, gain access to secrets, or affect the rest of our machine, simply because it is computing a pure, de-
terministic, side-effect-free function f . Such functions cannot perform any input (it is impossible for them
to depend on anything other than the n inputs explicitly listed) and cannot perform any output (they have no
side effects), so they are totally sandboxed.
Let’s take an example. Suppose we want to build an extensible spam-filtering application. Maybe Sam has

CS 161, Fall 2005, Notes 30 8

studied the characteristics of spam and built a program that takes an email as input and classifies it either
as “spam” or “not spam”. I’d like to download and use his program to help filter my email, but I don’t
want to run a program from an untrusted source directly in my account, because for all I know it might be
a malicious Trojan horse. Note that Sam’s program can be expressed as a boolean function f that takes an
email (which is just a bit-string) as input and produces a boolean output. Thus, one solution would be to
have Sam express his program as a combinatorial circuit and make the circuit available on his web page.
I could download his circuit and evaluate it on each incoming email. Even if Sam is malicious, his filter
cannot leak the contents of any of my emails to Sam or anyone else (except possibly for whether Sam’s filter
classified each email as spam or not), and it cannot harm my machine—the worst it can do is cause me to
make the wrong filtering decisions.
An interpreter for boolean circuits can be made extremely simple. As we know, NAND gates are all you need
to express arbitrary combinatorial logic. We can thus express such a circuit as a sequence of instructions for
a very simple CPU, as follows. We store each value in the circuit in its register. Each instruction reads inputs
from two specified registers, computes their NAND, and stores it to a third register (e.g., NAND r1037,
r27, r45 might compute the NAND of the bit in register r27 and the bit in r45, storing the result in
register r1037). An interpreter for this language can be implemented in a few lines of code.
Of course, circuits aren’t a very user-friendly or flexible programming language. However, we can apply
the same general principles to other interpreted languages. The key trick is to design the language so that it
is impossible to express operations that would violate the sandboxing policy. For instance, we could design
a language so that there is no way to perform I/O or to read/write outside the program’s address space, and
gain the same benefits of pure, deterministic, side-effect-free computation as a sandboxing tool.
One good example of this is BPF, an interpreted language for expressing packet filters that can be down-
loaded into the kernel. The BPF language is designed so that you cannot even express harmful programs
in the language. For instance, the designers wanted to make sure that users could not render the machine
unusable by downloading a program with an infinite loop into the kernel, so the BPF language is designed
to make it impossible to write programs with non-terminating loops by the simple expedient of forbidding
all backward jumps (all of BPF’s control-transfer instructions only permit forward jumps).

CS 161, Fall 2005, Notes 30 9

