CS 161 Computer Security
Fall 2005 J oseph / Tygar / Vazirani / Wagner Notes 18

We will consider the following authentication scheme: tiseruselects a numbé&t = P- Q product of two
large primes, and a numbge= x2 modN. The server is giveil,y and to login the user must prove that she
knowsx : X2 =y modN. Notice the similarity between this and the RSA function —rehee are squaring
instead of cubing to implement our hard to invert functiamdded, it turns out that computing square roots
moduloN is provably as hard as factorimg (as always, this is proved by a reduction. The reduction show
that how to use any algorithm for square root extraction asbaositine to implement a fast algorithm for
factoring).

Before we can state the zero-knowledge protocol and estaitdi properties, we must state a few facts about
numbers which are perfect squares moduld_et us restrict our attention to numbersia < N — 1 which

are relatively prime tdN (i.e. gcd(a,N) = 1; note that if the gcd is not 1 then it must Ber Q, so sucha’s

are rare and lucky choices that we will not consider). Thisof@umbers is denotedy,. For example, for

N = 15, we would consider the numbetg, = {1,2,4,7,8,11,13 14}. Among these numbers only 1 and 4
are perfect squares. Each has four square rébtd, 11,14} and{2,7,8,13} respectively. The square roots
come in pairs, e.g. 13 —2 mod 15 and & —7 mod 15. In fact, for gener®l = P- Q, exactly one quarter

of the elements oy, are perfect squares and every perfect sqaaredN has four square rootg x and
: y. Moreover, multiplying a square by a square gives anothearsg since - 2 modN = (xz)2 modN.
The protocal:

The prover knows : X2 =y mod N. She wishes to prove to the verifier that she knows such a xalue
1. The prover picks a random valuenod N and computes = r?> modN and sends to the verifier.

2. The verifier randomly selects one of the following two tdades: 1) He asks the prover to send him
v/$smodN. 1) He asks the prover to send hiyySy modN.

3. The prover sends eithewor rx modN depending upon the challenge.
4. The verifier checks that the received number when squaitesdiss the challege.

Let us prove that this protocol provides a zero-knowledgmpof knowledge of a square root pimodN.
We will show that if the prover does not know a square rogtwfod N then the honest verifier will catch her
cheating with probability at least/2. This will establish that the protocol constitutes a profdfnowledge.
And we will show that the verifier cannot extract any extraomfation from the prover no matter how he
deviates from protocol. To do so we will show that for everyifier (no matter how dishonest), there is a
simulator that can recreate the verifier's view (his coratéos with the prover) without any knowledge of a
square root off modN. This will establish that the protocol is zero-knowledge.

K nowledge extractor:

If the prover wishes not to be caught cheating, she must leetatdnswer both possible challenges of the
verifier. We will argue that such a prover must know a squact oby modN. For the purposes of the
proof let us assume that there is a hypothetical knowledgr@a@®r who can travel backward in time, and
after issuing the first challenge and receiving the answerkhowledge extractor travels back in time and
issues the second challenge. By our assumption the proweartawer both challenges and therefore the

CS 161, Fall 2005, Notes 18

[EnY

knowledge extractor receives u> = smodN andv : v = sy modN. Noww = v/u modN is a square root

of y modN, sincew? = v?/u? = sy/s=y modN. Thus the knowledge extractor can obtain a square root of
y mod N, therefore establishing that the prover must have knowruaregoot ofy modN. It is important

to understand that the knowledge extractor is a hyothetmastruct. The protocol requires that the prover
only answer if the verifier issues one of the two possiblelehgkes. Also note that a dishonest prover can
cheat with probability 12. This probability of cheating can be decreased /2 by repeating the protocol

k times.

The Simulator:

What is the verifier’s view of the protocol. Note that we arevrassuming that the prover is honest and that
the verifier is trying to trick the prover into revealing imfoation beyond her knowledge of some square
root ofy modN. Challenge | by the verifier isa uniformly random perfect square modiNo Let us show
that the second challengg modN is also a uniformly random perfect square modiloTo see this first
notice thatsy is a perfect square, since it is a product of two perfect suaklso notice that multiplication
by y modN is a permutation of the numbers modWMNo This is because all the numbers we are working
with are relatively prime tdN, and therefore we can divide lyymod N to show that ifsy = Sy modN then

s= s modN. Thus multiplication byy is a one-to-one mapping from the set of perfect squareséd, its
and is therefore a bijection. Thus if we pislat random among the perfect squares, themodN is also
uniformly random among the perfect squares modhilo

The simulator selects a randanmodN, and with probability 12 sends the verifier?> modN and with
probability 1/2 sends the verifier?/y modN. If the verifier issues challenge |, then in the first case the
simulator responds with modN and otherwise rewinds the simulation and starts again. efvrifier
issues challenge Il, then in the second case, the simukdponds witlr mod N, and otherwise it rewinds
the simulation and starts again. Since the simulator'soghisiindependent of the choice of challenge issued
by the verifier, it follows that the simulation will succeetsatisying the verifier with probability at leastZ

The verifier's view is accurately recreated by the simulagorce it just consists of a challenge consisting of
a uniformly random perfect square modiofollowed by a response from the prover consisting of a sguar
root of this number.

Multi-party Protocols:

In a multi-party protocol, we havweplayers, each with an input, who jointly wish to compute sdometion

of these inputs. For example, in an election protocol, with tandidates — candidate 0 and candidate 1,
each player has a single bit which represents his vote, angrtitocol must compute the majority of all
thesen bits. Ideally at the end of the protocol, each player knowsg the answer (which is the majority bit)
and his own vote, and no further information is leaked dutirgprotocol. We will consider three different
models in which such a protocol can be implemented.

Before we do so, let us consider another example of a muttyg&otocol: the millionaires problem.

Suppose thah millionaires meet at a party and they wish to know who is thalitest. However, none

of the players wishes to reveal any information about theirworth. Ideally we would like a protocol at
the end of which each player learns who is the wealthiestjowit learning any further information about
the other players. i.e. at the end of the protocol each playenos her net worth, and the identity of the
wealthiest player, and nothing more.

A model in which it is easy to design such multi-party protsas the trusted party model. For example,
an election protocol can be implemented by having each pawgal their vote to the trusted party, who
then computes the majority answer and broadcasts thegdsutin players. Similarly, in the millionaires
problem, each party could reveal their net worth to the édigtarty who then figures out which one is the
weathiest and broadcasts the answer.

CS 161, Fall 2005, Notes 18 2

An intermediate model is the honest but curious model. Is thddel there is no trusted party. However,
the players are all honest and will not deviate from the mwitoOn the other hand, the players are curious
and if any information is revealed during the course of thatqmol (without their having to deviate from
their prescribed behaviour according to the protocol) thewy will try to figure it out. The precise condition
stating that the protocol does not leak any information ty weuch like the zero-knowledge condition. For
example, in the voting example, it says that there is a sitoutaat takes as input play@s vote and the
final outcome of the vote, and reconstructs playeriew at the end of the protocol. Protocols for a very
wide variety of tasks, including voting and the millionarproblem, can be designed in this model. The
design of these protocols require certain tricks that weneil elaborate upon here.

The most general model is one where some of the players drendist and can collude with each other
to try to compromise the protocol — by either changing thel fmeicome of the protocol, or by obtaining
information beyond what the protocol prescribes each plalyeuld have. Using zero-knowledge protocols
as a subroutine, any protocol that works in the honest budesimodel can be compiled into one that works
in the general model. Let us describe the outline of the réalu¢chat establishes this fact. Let us assume
that there aren players, and that each has an input Assume we are given a protocol in the honest but
curious model. In this protocol, in thg" step, some player, say playleisends a message based on his
inputx,, the messages broadcast during the prevjoud steps, and some random bits flipped by pldyer
Of these, the messages broadcast are known to the rest dagieesy but inpuk, and the random bits are
private to thek" player. Maintaining this privacy might be essential to tberectness of the protocol in the
honest but curious model. In the general protocol, eacheplgystarts by commiting his inpu, and the
string of random bits, that he would use during the entire course of the protocoé ddmmitment could
be made by computin§(x,), f(r,), wheref is a one-way function (this is similar to the commitment made
by the user at the beginning of the password identificatianoaol). Each player still broadcasts his next
message to the remaining players. If plaaevould have broadcast the string in this round, then that is
exactly what he would do in the general protocol. The mairlehge is convincing the remaining players
thatm, is really the message that he would have sent if he were hofikstpoint is that the true message
m is a function ofx, r, and the previously broadcast messages. In addition to tlssagem,, playerk
also gives a zero-knowledge proof timt is the desired function of the, r, and the previously broadcast
messages. This gives a very general theorem showing thratdhe secure multi-party protocols for a wide
array of problems. Needless to say, the resulting protam@sot practical. The value of this result lies
in its generality, and the conceptual framework it provigethin which one may understand multi-party
protocols.

CS 161, Fall 2005, Notes 18 3

