
CS 161 Computer Security
Fall 2005 Joseph/Tygar/Vazirani/Wagner Notes 18
We will consider the following authentication scheme: the user selects a numberN = P ·Q product of two
large primes, and a numbery = x2 modN. The server is givenN,y and to login the user must prove that she
knowsx : x2 = y modN. Notice the similarity between this and the RSA function — here we are squaring
instead of cubing to implement our hard to invert function. Indeed, it turns out that computing square roots
moduloN is provably as hard as factoringN (as always, this is proved by a reduction. The reduction shows
that how to use any algorithm for square root extraction as a subroutine to implement a fast algorithm for
factoring).

Before we can state the zero-knowledge protocol and establish its properties, we must state a few facts about
numbers which are perfect squares moduloN. Let us restrict our attention to numbers 0≤ a ≤ N −1 which
are relatively prime toN (i.e. gcd(a,N) = 1; note that if the gcd is not 1 then it must beP or Q, so sucha’s
are rare and lucky choices that we will not consider). This set of numbers is denotedZ∗

N . For example, for
N = 15, we would consider the numbersZ15 = {1,2,4,7,8,11,13,14}. Among these numbers only 1 and 4
are perfect squares. Each has four square roots,{1,4,11,14} and{2,7,8,13} respectively. The square roots
come in pairs, e.g. 13= −2 mod 15 and 8= −7 mod 15. In fact, for generalN = P ·Q, exactly one quarter

of the elements ofZ∗
N are perfect squares and every perfect squarea modN has four square roots

+
− x and

+
− y. Moreover, multiplying a square by a square gives another square, sincex2 · z2 modN = (xz)2 modN.

The protocol:

The prover knowsx : x2 = y modN. She wishes to prove to the verifier that she knows such a valuex.

1. The prover picks a random valuer modN and computess = r2 modN and sendss to the verifier.

2. The verifier randomly selects one of the following two challenges: I) He asks the prover to send him√
s modN. II) He asks the prover to send him

√
sy modN.

3. The prover sends eitherr or rx modN depending upon the challenge.

4. The verifier checks that the received number when squared satisfies the challege.

Let us prove that this protocol provides a zero-knowledge proof of knowledge of a square root ofy modN.
We will show that if the prover does not know a square root ofy modN then the honest verifier will catch her
cheating with probability at least 1/2. This will establish that the protocol constitutes a proofof knowledge.
And we will show that the verifier cannot extract any extra information from the prover no matter how he
deviates from protocol. To do so we will show that for every verifier (no matter how dishonest), there is a
simulator that can recreate the verifier’s view (his conversation with the prover) without any knowledge of a
square root ofy modN. This will establish that the protocol is zero-knowledge.

Knowledge extractor:

If the prover wishes not to be caught cheating, she must be able to answer both possible challenges of the
verifier. We will argue that such a prover must know a square root of y modN. For the purposes of the
proof let us assume that there is a hypothetical knowledge extractor who can travel backward in time, and
after issuing the first challenge and receiving the answer, the knowledge extractor travels back in time and
issues the second challenge. By our assumption the prover can answer both challenges and therefore the

CS 161, Fall 2005, Notes 18 1



knowledge extractor receivesu : u2 = s modN andv : v2 = sy modN. Now w = v/u modN is a square root
of y modN, sincew2 = v2/u2 = sy/s = y modN. Thus the knowledge extractor can obtain a square root of
y modN, therefore establishing that the prover must have known a square root ofy modN. It is important
to understand that the knowledge extractor is a hyotheticalconstruct. The protocol requires that the prover
only answer if the verifier issues one of the two possible challenges. Also note that a dishonest prover can
cheat with probability 1/2. This probability of cheating can be decreased to 1/2k by repeating the protocol
k times.

The Simulator:

What is the verifier’s view of the protocol. Note that we are now assuming that the prover is honest and that
the verifier is trying to trick the prover into revealing information beyond her knowledge of some square
root of y modN. Challenge I by the verifier iss a uniformly random perfect square moduloN. Let us show
that the second challengesy modN is also a uniformly random perfect square moduloN. To see this first
notice thatsy is a perfect square, since it is a product of two perfect squares. Also notice that multiplication
by y modN is a permutation of the numbers moduloN. This is because all the numbers we are working
with are relatively prime toN, and therefore we can divide byy modN to show that ifsy = s′y modN then
s = s′ modN. Thus multiplication byy is a one-to-one mapping from the set of perfect squares to itself,
and is therefore a bijection. Thus if we picks at random among the perfect squares, thensy modN is also
uniformly random among the perfect squares moduloN.

The simulator selects a randomr modN, and with probability 1/2 sends the verifierr2 modN and with
probability 1/2 sends the verifierr2/y modN. If the verifier issues challenge I, then in the first case the
simulator responds withr modN and otherwise rewinds the simulation and starts again. If the verifier
issues challenge II, then in the second case, the simulator responds withr modN, and otherwise it rewinds
the simulation and starts again. Since the simulator’s choice is independent of the choice of challenge issued
by the verifier, it follows that the simulation will succeed in satisying the verifier with probability at least 1/2.
The verifier’s view is accurately recreated by the simulator, since it just consists of a challenge consisting of
a uniformly random perfect square moduloN, followed by a response from the prover consisting of a square
root of this number.

Multi-party Protocols:

In a multi-party protocol, we haven players, each with an input, who jointly wish to compute somefunction
of these inputs. For example, in an election protocol, with two candidates — candidate 0 and candidate 1,
each player has a single bit which represents his vote, and the protocol must compute the majority of all
thesen bits. Ideally at the end of the protocol, each player knows only the answer (which is the majority bit)
and his own vote, and no further information is leaked duringthe protocol. We will consider three different
models in which such a protocol can be implemented.

Before we do so, let us consider another example of a multi-party protocol: the millionaires problem.
Suppose thatn millionaires meet at a party and they wish to know who is the wealthiest. However, none
of the players wishes to reveal any information about their net worth. Ideally we would like a protocol at
the end of which each player learns who is the wealthiest, without learning any further information about
the other players. i.e. at the end of the protocol each playerknwos her net worth, and the identity of the
wealthiest player, and nothing more.

A model in which it is easy to design such multi-party protocols is the trusted party model. For example,
an election protocol can be implemented by having each partyreveal their vote to the trusted party, who
then computes the majority answer and broadcasts the results to alln players. Similarly, in the millionaires
problem, each party could reveal their net worth to the trusted party who then figures out which one is the
weathiest and broadcasts the answer.

CS 161, Fall 2005, Notes 18 2



An intermediate model is the honest but curious model. In this model there is no trusted party. However,
the players are all honest and will not deviate from the protocol. On the other hand, the players are curious
and if any information is revealed during the course of the protocol (without their having to deviate from
their prescribed behaviour according to the protocol) thenthey will try to figure it out. The precise condition
stating that the protocol does not leak any information is very much like the zero-knowledge condition. For
example, in the voting example, it says that there is a simulator that takes as input playeri’s vote and the
final outcome of the vote, and reconstructs playeri’s view at the end of the protocol. Protocols for a very
wide variety of tasks, including voting and the millionaires problem, can be designed in this model. The
design of these protocols require certain tricks that we will not elaborate upon here.

The most general model is one where some of the players are dishonest and can collude with each other
to try to compromise the protocol — by either changing the final outcome of the protocol, or by obtaining
information beyond what the protocol prescribes each player should have. Using zero-knowledge protocols
as a subroutine, any protocol that works in the honest but curious model can be compiled into one that works
in the general model. Let us describe the outline of the reduction that establishes this fact. Let us assume
that there aren players, and that each has an inputxi. Assume we are given a protocol in the honest but
curious model. In this protocol, in thejth step, some player, say playerk sends a message based on his
input xk, the messages broadcast during the previousj−1 steps, and some random bits flipped by playerk.
Of these, the messages broadcast are known to the rest of the players, but inputxk and the random bits are
private to thekth player. Maintaining this privacy might be essential to the correctness of the protocol in the
honest but curious model. In the general protocol, each player k, starts by commiting his inputxk and the
string of random bitsrk that he would use during the entire course of the protocol. The commitment could
be made by computingf (xk), f (rk), where f is a one-way function (this is similar to the commitment made
by the user at the beginning of the password identification protocol). Each player still broadcasts his next
message to the remaining players. If playerk would have broadcast the stringmk in this round, then that is
exactly what he would do in the general protocol. The main challenge is convincing the remaining players
thatmk is really the message that he would have sent if he were honest. The point is that the true message
mk is a function ofxk, rk and the previously broadcast messages. In addition to the messagemk, playerk
also gives a zero-knowledge proof thatmk is the desired function of thexk, rk and the previously broadcast
messages. This gives a very general theorem showing that there are secure multi-party protocols for a wide
array of problems. Needless to say, the resulting protocolsare not practical. The value of this result lies
in its generality, and the conceptual framework it provideswithin which one may understand multi-party
protocols.

CS 161, Fall 2005, Notes 18 3


