
Page 1

CS 194-1 (CS 161)
Computer Security

Lecture 23

Operating System Security; Rootkits

November 27, 2006
Prof. Anthony D. Joseph

http://cs161.org/

Lec 3.211/27/06 Joseph CS161 ©UCB Fall 2006

Goals for Today
• Operating System security mechanisms

– Keep malicious programs from crashing OS
– Keep malicious programs from crashing each other
– Hardware helps isolate a program’s effects to
within just that program

» Address translation with non-executable regions
» Dual mode operation

• Rootkits
– Definition and history
– User-mode rootkits
– Kernel module/hooking rootkits

• Control over what applications run on a platform
– Need a secure environment from HW to OS levels

Lec 3.311/27/06 Joseph CS161 ©UCB Fall 2006

Operating System Security
• Simple Policy:

– Don’t allow programs to read/write memory of
other programs or of the Operating System

• What is an Address Space?
– All the memory addresses a program can touch

» All the state that a program can affect or be
affected by

– Each program (process) and kernel has potentially
different address spaces.

• Achieve protection by restricting what a program
can touch!

• Address Translation:
– Translate from Virtual Addresses (emitted by CPU)
into Physical Addresses (of memory)

Lec 3.411/27/06 Joseph CS161 ©UCB Fall 2006

Address Translation
• Mapping often performed using table lookup in

Hardware by Memory Management Unit (MMU)
– Separate table for each user address space
– No way for a program to even talk about other
program’s addresses

• Translation also helps with issue of stuffing
multiple programs into memory

• Translation helps protection:
– Control translations, control access

CPU MMU

Virtual
Addresses

Physical
Addresses

Untranslated
Read/Write

Lec 3.511/27/06 Joseph CS161 ©UCB Fall 2006

Address Translation Example

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
Lec 3.611/27/06 Joseph CS161 ©UCB Fall 2006

Dual Mode Operation
• Should Users be able to change Page Table???
• Hardware provides at least two modes:

– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode: Normal programs executed

• Some instructions/ops prohibited in user mode:
– Example: cannot modify page tables in user mode

» Attempt to modify ⇒ Exception generated

• Transitions from user mode to kernel mode:
– System Calls, Interrupts, Other exceptions

Page 2

Lec 3.711/27/06 Joseph CS161 ©UCB Fall 2006

Lock User-Programs in Asylum
• Idea: Lock user programs in padded cell

with no exit or sharp objects
– Cannot change mode to kernel mode
– User cannot modify page table mapping
– Limited access to memory: cannot
adversely effect other processes

» Side-effect: Limited access to
memory-mapped I/O operations
(I/O that occurs by reading/writing memory locations)

– Limited access to interrupt controller
– What else needs to be protected?

• A couple of issues
– How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are
the same person. How do you manage this???

– How do programs interact?
– How does one switch between kernel and user modes?

» OS → user (kernel → user mode): getting into cell
» User→ OS (user → kernel mode): getting out of cell

Lec 3.811/27/06 Joseph CS161 ©UCB Fall 2006

How to get from Kernel→User
• What does the kernel do to create a new user

process?
– Allocate and initialize address-space control block
– Read program off disk and store in memory
– Allocate and initialize translation table

» Point at code in memory so program can execute
» Possibly point at statically initialized data

– Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program

• How does kernel switch between processes?
– Same saving/restoring of registers as before
– Save/restore PSL (hardware pointer to translation table)

Lec 3.911/27/06 Joseph CS161 ©UCB Fall 2006

User→Kernel (System Call)
• Can’t let inmate (user) get out of padded cell on own

– Would defeat purpose of protection!
– So, how does the user program get back into kernel?

• System call: Voluntary procedure call into kernel
– Hardware for controlled User→Kernel transition
– Can any kernel routine be called?

» No! Only specific ones.
– System call ID encoded into system call instruction

» Index forces well-defined interface with kernel

Lec 3.1 011/27/06 Joseph CS161 ©UCB Fall 2006

System Call Continued
• What are some system calls?

– open, close, read, write, lseek, delete, mkdir, rmdir,
truncate, chown, chgrp, fork, exit, wait (like join)

– Network: socket create, set options
• Are system calls constant across operating systems?

– Not entirely, but there are lots of commonalities
– Also some standardization attempts (POSIX)

• What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started

• System Call argument passing:
– In registers (not very much can be passed)
– Write into user memory, kernel copies into kernel mem

» User addresses must be translated!
» Kernel has different view of memory than user

– Every argument must be explicitly checked!
» TOCTTOU vulnerabilities!

Lec 3.1 111/27/06 Joseph CS161 ©UCB Fall 2006

User→Kernel (Exceptions)
• A system call instruction causes a synchronous

exception (or “trap”)
– In fact, often called a software “trap” instruction

• Other sources of synchronous exceptions:
– Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

– Segmentation Fault (address out of range)
– Page Fault (for illusion of infinite-sized memory)

• Interrupts are Asynchronous Exceptions
– Examples: timer, disk ready, network, etc ….
– Interrupts can be disabled, traps cannot!

• On system call, exception, or interrupt:
– Hardware enters kernel mode with interrupts disabled
– Saves PC, then jumps to appropriate handler in kernel
– For some processors (x86), processor also saves
registers, changes stack, etc.

• Actual handler typically saves registers, other CPU
state, and switches to kernel stack

Lec 3.1 211/27/06 Joseph CS161 ©UCB Fall 2006

Context Switching
• Switching from one process to another one

– Save hardware pointer to process A’ s translation
table

– Load hardware pointer to process B’ s translation
table

• Now that we have isolated processes, how
can they communicate?
– Two models: shared memory, or via kernel

Page 3

Lec 3.1 311/27/06 Joseph CS161 ©UCB Fall 2006

Administrivia
• Homework 3 due 12/1

• Midterm 2
– Grades will be posted today or tomorrow
– Will be handed back Thursday in section

• Midterm 3 is in-class on 12/6
– In-class review 12/4

Lec 3.1 411/27/06 Joseph CS161 ©UCB Fall 2006

Communication
• Two models for interprocess communication

– Shared memory: common mapping to physical page
» As long as we place objects in shared memory address

range, threads from each process can communicate
» Note that processes A and B can talk to shared memory

through different addresses
» In some sense, this violates the whole notion of

protection that we have been developing
– If address spaces don’t share memory, all inter-
address space communication must go through kernel
(via system calls)

» Byte stream producer/consumer (put/get): Example,
communicate through pipes connecting stdin/stdout

» Message passing (send/receive): Will explain later how you
can use this to build remote procedure call (RPC)
abstraction so that you can have one program make
procedure calls to another

» File System (read/write): File system is shared state!
• Be careful to avoid TOCTTOU vulnerabilities!

Lec 3.1 511/27/06 Joseph CS161 ©UCB Fall 2006

HW Support to Detect Buffer Overflow
• Add flag bits to each Page/Segment Table Entry

– Mark individual memory areas as non-executable
» No Execute (NX) support (AMD Opteron and Athlon 64),

Execute Disable (XD) support (Intel x86), Alpha, SPARC,
PowerPC, Itanium, …

• Requires OS support to mark stack/heap as non-exec
– Linux and Sun’s Sparc /Solaris, Windows XP SP2
– Any attempts to execute code from pages marked as non-
executable results a program exception

• Does this prevent buffer overflow exploits?
– No – only prevents buffer overflow exploits that try to
execute code they send

– Can overwrite return PC and execute an existing
procedure (e.g., payload with return address for execve
and some malicious parameters)

Lec 3.1 611/27/06 Joseph CS161 ©UCB Fall 2006

You’ve Been 0wned!
• How can you tell when your machine has been

compromised or taken over?
• “Odd” processes
• “Odd” windows
• “Extra” files
• Changed registry/configuration files
• “Extra” network connections, open ports
• …

Lec 3.1 711/27/06 Joseph CS161 ©UCB Fall 2006

What Is a Rootkit?

• Software or techniques that attempts to hide
cracker’s software from detection
– Cracker’s software can be anything

• Simple methods
– Delete entries from login records, shell history

» Then, last command won’t show intruder

• Cloaking methods (aka Ghostware)
– Hide executables, libraries, config files, processes,
…

» Hide from ls, dir, ps, taskmgr, …

Lec 3.1 811/27/06 Joseph CS161 ©UCB Fall 2006

Rootkit Functions
1. Maintain access
2. Attack local or other systems
3. Destroy evidence

• Which OS’es are vulnerable?

Page 4

Lec 3.1 911/27/06 Joseph CS161 ©UCB Fall 2006

Maintaining Access

• Backdoor: telnet, rsh, ssh, irc, custom
– UDP/TCP/ICMP protocol running on “high” port
– Could require activation by “magic” TCP/IP packet, be a
stealthy network sniffer, or use a covert channel, …

• Outbound connection
– Works behind firewalls, no open inbound port to detect
– Can be tunneled over outbound port 80

Lec 3.2 011/27/06 Joseph CS161 ©UCB Fall 2006

Attacking Local or Other Systems
• Collect local information
• Install network sniffer
• Perform DDoS attack
• Attempt to propagate
• …

Lec 3.2 111/27/06 Joseph CS161 ©UCB Fall 2006

Destroying Evidence
• Execute a log cleaner
• Hide its files
• Hide its processes
• Hide its network connections
• …

Lec 3.2 211/27/06 Joseph CS161 ©UCB Fall 2006

How Rootkits Get On Your Machine
• Cracker scans for vulnerable hosts

– Or uses privilege elevation exploit
– Or uses a worm or virus payload

• Exploits vulnerability to gain shell access
• Then copies over and installs rootkit …

– Hides existence, records
– Modifies start files
– Starts daemon

Lec 3.2 311/27/06 Joseph CS161 ©UCB Fall 2006

Some Rootkit History Highlights
• 1989: First log cleaners found on hacked systems
• 1994: Early SunOS kits detected
• 1996: First Linux rootkits released
• 1997: Linux Kernel Module Trojans proposed
• 1998

– Non-LKM kernel patching proposed
– “Cult of the Dead Cow” created Windows rootkit
“Back Orifice”

• 1999
– Adore LKM kit released by TESO
– “Cult of the Dead Cow” releases BO2K

• 2000: T0rn rootkit released
• 2002: Sniffer backdoors start to show up in kits

Lec 3.2 411/27/06 Joseph CS161 ©UCB Fall 2006

Pre-Rootkits: Hiding Login Events
• Many systems display a user’s last login time

when they login
• Early crackers covered their tracks by using

tools to modify login and other db records
– Modify or delete wtmp file
– Kill syslogd, and modify or delete
syslog.conf

• How to defend systems?
– Use a remote syslogd
– But, some tools report remote entries in
syslog.conf

Page 5

Lec 3.2 511/27/06 Joseph CS161 ©UCB Fall 2006

Binary Library Rootkits: T0rn v8
• User-mode rootkit
• Easy to use (precompiled binaries)

– Just type ./t0rn.
– Includes a log cleaner called t0rnsb
– Also a network sniffer named t0rns and a log
parser called t0rnp

• Replaces the tools that would show the rootkit:
– /usr/bin/du, /usr/bin/find, /sbin/ifconfig,
/usr/sbin/in.fingerd, /bin/login, /bin/ls, /bin/netstat,
/bin/ps, /usr/bin/sz, /usr/bin/top

• Replaces system dynamic libraries to hide rootkit

Lec 3.2 611/27/06 Joseph CS161 ©UCB Fall 2006

Detecting T0rn v8
• Several serious implementation errors:

– Different output from ps –eb than real one
– Running netstat causes segmentation fault

• Wrong file sizes versus real files
• Easy to detect with lsof (list open files/ports)

– Shows daemon listening on t0rn ’s default port
– Shows all processes running under t0rn daemon
(since it has open files)

• Can also be remotely detected
– Use nmap to detect open ports
– This is a common detection mechanism for non-
stealthy rootkits

• Libraries only work for dynamically linked programs

BREAK

Lec 3.2 811/27/06 Joseph CS161 ©UCB Fall 2006

Kernel Module-based Rootkits

• Target Linux, Free/OpenBSD and Solaris
• Hook into the system kernel and replace/remap or

modify/intercept) various system calls
– Ones used by file system tools, and core kernel
components

• Operating system core is no longer trustworthy
• Config file or built-in filename regexps lists files

to hide:
– Its own files, process, and sub-processes
– Any of its inbound/outbound network connections
(by address, protocol, listening process)

Lec 3.2 911/27/06 Joseph CS161 ©UCB Fall 2006

Detecting Kernel Module Rootkits

• Challenge is detection “from within the box”
– Rootkit controls the vertical and the horizontal

• Leverage implementation errors
• Look for inconsistencies between different views

– Can use cryptographic hashes of all important
files (but have to protect hash values…)

– Use tcsh’s built-in ls: ls-F
– Compare results from lower level interface

• Ideal solution:
– Compare against known good system or CDROM

» Boot from CDROM/remote system and then examine
disk

Lec 3.3 011/27/06 Joseph CS161 ©UCB Fall 2006

User-Mode Windows Rootkit: Back Orifice

• Windows is also vulnerable to user and kernel
rootkits…

• Back Orifice (Win98 and WinNT systems)
– Hid by running as a “system service”
– Modified a registry startup entry
– Listened for remote commands
– Wasn’t very stable under WinNT

• Didn’t really try to hide itself
– Was visible to process list tools

Page 6

Lec 3.3 111/27/06 Joseph CS161 ©UCB Fall 2006

Kernel Module Windows Rootkit: BO2K
• Similar behavior as Unix kernel rootkits

– Targeted W2K systems
• Installed itself into kernel memory
• Hooked kernel functions with its own modified

functions
– Blocked filesystem, process table and other
attempts to find BO2K

Lec 3.3 211/27/06 Joseph CS161 ©UCB Fall 2006

Detecting Windows Kernel Rootkits

• Examine startup registry entries
– Works for many rootkits

• In the box checks
– Compare Win32 API results with results from low
level kernel calls (e.g., process list, master file
table,…)

– Compare cryptographic hashes against known
correct values

– Look for hiding actions (create file/dir with
prefixes)

• Out of the box checks
– Compare against known good media/system

Lec 3.3 311/27/06 Joseph CS161 ©UCB Fall 2006

Rooting a Windows Kernel Rootkit
• Microsoft Research Tricks for using rootkit

against itself
• Same name attack

– Copy cmd.exe to same name/prefix as rootkit
– Launch with start command
– Rootkit can’t hook itself, so built-in commands
can run and see rootkit files, processes,
directories, …

• Tools same name attack
– Pick tool of choice for removing rootkit
– Use same name attack, as rootkit won’t block
itself

Lec 3.3 411/27/06 Joseph CS161 ©UCB Fall 2006

Kernel Hooking Abuses
• Many anti-virus, firewall, anti-spyware and other

tools use kernel hooking tricks
– Can affect system stability when multiple programs
are hooking kernel

– MS Vista will block unsigned program hooking
• Sony XCP used kernel hooking to hide itself
• Problem is that crackers may be able to exploit

cloaking to hide their tools!

Lec 3.3 511/27/06 Joseph CS161 ©UCB Fall 2006

Summary
• OS Security mechanisms - hardware helps isolation

– Address translation
– Dual mode operation
– New HW options: non-executable regions

• Rootkits – all systems are vulnerable
– On going arms race between crackers and detection
tools…

– Out of the box detection will always be possible
– In the box detection will increase in difficulty

