CS 194-1 (CS 161) Computer Security

Midterm 1 Review

Part 1

Threat Assessment

- Some questions:
 - What kind of threats might we face?
 - What kind of capabilities might we expect adversaries to have?
 - What are the limits on what the adversary might be able to do to us?
- Result is a threat model, a characterization of the threats the system must deal with
 - Think: Who? What? Why?

Security Basics

- · Authentication: prove identity
 - Who are you?
- · Authorization
 - Granting access
- · Access control: enforcing authorization
 - Access Control Matrix
 - ACL
 - Capabilities

MAC and DAC

Mandatory Access Control (MAC)

- » We also use the abbreviation MAC for "message authentication code"
- » Policy determines access
- » Rules that the system enforces
- » Users can't break rules
- » RULES CAN BE FLEXIBLE

- · Discretionary Access Control (DAC)
 - Users set their own rules
 - » (for their own files)

Symmetric crypto

- Definition
- Advantages
 - Fast
 - Reasonably well-understood
 - Standardized
 - Can be implemented in hardware easily
 - Exhaustive search attack hard (with large key size)
- Disadvantages
 - Key distribution
 - Single target
 - Still needs to be implemented in protocols

Symmetric Crypto: DES, AES

- · AES (Rijndael)
- 128-256 bit key, 128 bit block cipher
- Attacks
 - Brute Force Exhaustive
 Search
 - Known Plaintext
 - Chosen Plaintext
 - » Differential cryptanalysis

Asymmetric: "public keys"

- Encryption key public, decryption key private
 - Easy way to send secret messages
 - Decryption only by intended recipient
 - Perfect for distributing symmetric keys

- · Encryption key private, decryption key public
 - Only I can send messages, anyone can verify (and read)
 - A type of "digital signature"
 - We will develop this idea in detail

Asymmetric: pros and cons

Advantages

- Doesn't require advance set up
- Strongest forms are as hard as factoring
- Perfect for solving key distribution problem
- Good for building protocols

Disadvantages

- Slow, slow, slow (& takes space too)
- Secrecy & source authentication takes two encryptions
- Need to find a way to prove "public keys" are honest
 - » Solution: public key hierarchy

RSA

- · Rivest, Shamir, Adleman (1978 published 1979)
- · Idea:
 - Given e and d
 - Encryption: c = E(m) = me mod pq
 - Decryption: D(c) = cd mod pq
- Issues:
 - Given e, how can we find d?
 - » Answer: use EGCD (extended greatest common divisor)
 - Euclidean algorithm

Signatures

- · Signing vs. Encrypting
- Encryption is a TOOL
 - Can help in signing
 - Does not trivially solve the signature problem!
- · Asymmetric Signing
 - Pretty Secure
 - Slow!
- · Symmetric Encryption As Signature?
 - Faster... but We need non-repudiation
- Message Authentication Code
 - Sign a hash!
 - » FAST, also ensures integrity

PKI: Public Key Infrastructure

- Problem: Whose public key is it?
- Solution: Have a trustworthy person sign it to vouch.
- Problem: Very few people are trusted by the WHOLE WORLD
 - Too much work on them!
- · Solution: Delegation
 - Kofi delegates to presidents/kings.
 - President delegates to governors.

Revocation

- · What?
 - Declare a public key to be invalid
- · Why?
 - Private key stolen
 - Failed PKI
- · How?
 - Explicit Revocation (lists)
 - » As Needed
 - Automatic Expiration
 - » Expiration date