
Project 1: Documentation and Grading

CS 161

October 13, 2006

Please read this early so that you have a good understand-
ing of what we expect.

1 Documents

As specified in the project handout, there are a few different documents you
should turn in as part of your submission. Here we’ll try to be a bit more
explicit about what we are expecting. You are to hand in (via the electronic
submission process) the following documents:

Final Design Document If you have not changed your design since the design
review, this could theoretically be the exact same document you submitted
for that. If you have made minor changes, please highlight them or provide
some other easy way for us to find all the changes. If you have made major
changes, please indicate which sections have changed and which have not,
and include some text (perhaps in its own section, perhaps a bit in each
changed section) giving a (very short) high-level overview of the changes.

Security Analysis Document This is the most important part of your docu-
mentation. In here is where you will convince us that your system achieves
the security goals, with specific reference to your implementation. More
about this below.

README file This is just a place to put practical information on how to run
your code. Please tell us exactly how to run your server, how to set up
your clients so they know the server’s IP address, what arguments we need
to pass (if any), and so on.

The final design document should be about the same length as the original
(4000 words max). Please also use 4000 words as a limit for the security analysis
document. This limit is somewhat flexible; if you find it too restrictive, let your
TA know. We suspect that the security analysis documents will be shorter,
however; a 1500-word document that is well argued and thorough would be
great. (Hint: As long as nothing important is missing and everything is clear,
graders strongly prefer to read short solutions.) There is no set limit for the
README, but by nature it should be very short.

1



2 Security Analysis Document

The goal of this document is to convince us that your system meets the security
requirements. You should include enough low-level details to demonstrate that
you have used cryptographic tools correctly.

For example, let’s say that your assignment was simply to write a program
that encrypts the string “Hello world” and sends it over the network to a friend
sharing a symmetric key with you that no one else knows; the only security
requirement is confidentiality. Here is how you might address the requirement
in your document:

To protect the confidentiality of the message, we use AES in cipher
block chaining (CBC) mode. In our code, the only place where
anything is sent over the network is in the sendMessage() function,
and in that function we encrypt the message right before sending it
over the socket. So there is no way for the message to go over the
network without being encrypted. Now the problem states that our
key is shared with the friend and no one else knows it, so only the
friend can decrypt the message. There are no known attacks against
AES better than brute-force, and a brute-force attack is infeasible
with a 128-bit key, so the confidentiality of the message is assured.

Your problem is more elaborate and your systems are much more compli-
cated, so you will have to take more considerations into account, but this is the
basic idea of the kind of analysis we’re looking for. Here is one more example.
Let’s say that the problem is to get the time of day from a time server and be
sure that it’s fresh; you may assume the server is trusted and you have its public
RSA key. Here is how you might address this problem:

Our SuperTimeLookup(tm) protocol specifies that the client gener-
ates a random 128-bit number as a nonce and sends it to the server
(the request message). The server then replies with the nonce plus
time of day, and a signature over the two values. If the signature
checks out, then the client knows that the server must have seen the
nonce and generated the message, because only the server has the
private key that signed the message (including the nonce). Further-
more, the time value must be fresh because the nonce was generated
randomly and the space of values is too big for an attacker to guess
the right value, so no replay attack is possible (if we used an 8-bit
number, for example, the attacker could have generated all 256 pos-
sible nonces and sent them to the server yesterday, then replied to
our request message with the appropriate one today, giving us the
wrong time). Therefore we are guaranteed that, if the signature is
valid, the time given in the message is the current time (i.e. no earlier
than when the request message was sent).

These examples should give you a good idea of what we’re looking for; the
first one specifies how the code uses a cryptographic primitive to achieve confi-

2



dentiality, and the second one describes the use of a nonce in a message protocol
to guarantee freshness (which is tied to message integrity and/or authentication,
depending on exactly what you’re trying to accomplish). Again, of course, your
analysis will be longer and more in-depth because your protocols and systems
are more complex, but the idea is the same.

2.1 Denial of Service

You are not required to consider Denial of Service attacks when implementing
your system, but here we do want you to think about them and discuss how
your system would fare under such an attack and how it could be improved.
The project handout explains what we expect for this. It can be one section of
your security analysis document.

3 Grading

3.1 Testing

We will test all the required functionality of your system. Things that are not
required, such as notification of sign-on/sign-off, do not need to be implemented,
but you need to implement enough to make sure your system is usable at a basic
level. (If there is anything that might trip us up when we try to run your system,
please mention it in the README.) We won’t be taking off points for occasional
code crashes when testing corner cases, but your code shouldn’t be crashing all
the time; it should fail gracefully from error conditions.

We may do some small amount of (currently unspecified) security testing
of your code. You are not required to do security testing yourself, so you will
not lose points because we discover something that could only be discovered by
testing. One reason we might test is if we notice what seems to be a weakness
in your system; we may then test it to see if an attack does work in practice. Or
if some part of your code is obscure to us and we can’t quite tell what it does,
we may find it easier to test it rather than puzzle over the source. But please
do make your code as readable as possible!

3.2 Analysis

The primary means we will use to grade the security of your project is reading
and evaluating your security analysis document. We will look to make sure you
address all the security requirements wherever they are relevant. We will look
to see if you defend your choice of cryptographic tools and your use of them. We
will especially look at your analysis of message protocols and why you believe
them to be secure. For full points, you need to be thorough in your assessment
of the system and precise in your arguments. There is necessarily a subjective
component to this grading, but you can turn that to your advantage by giving
clear, forceful, well-reasoned arguments.

3



You won’t lose points if there is some obscure attack that you didn’t think
of, or if one of your arguments turns out to be wrong because of something
outside the scope of this class. You will be marked down if you make faulty
arguments, or if you miss obvious attacks that have been mentioned in this
class, for example.

We will look at your source code, but only when necessary; the security
analysis document should contain your full analysis with reference to source
code when appropriate. If the analysis doesn’t seem to match the code, or if
the code doesn’t seem to implement what the design document says it should,
then of course we will take points off for that as well.

We will be very concerned about being reasonable and not holding things
against you that you have no way of knowing, but we do expect a high level of
attention to clear writing and well-reasoned, supported arguments.

4


