Project Description

CS 161 - Joseph/Tygar
September 27, 2006

Overview

The goal of this project is to design and implement a seclgtaim messaging program. Below are a set of functional
requirements followed by security requirements of the paog All aspects are strict requirements of the program.

Deadlines

This project will be split into two parts. First, your grouplhwrite a design document describing how your system
will work. This design document is due on October 2nd at 11:59 pm via enddd your TA. Your group will meet
with your TA to go over the design document, and suggest irgments if necessary. The second part will involve
your group writing the code to implement your system, tegtinand writing the final documenthe final hand-in

is due on October 16th at 11:59 pm.The details of the final submission process will be providadhe course
webpage at a later time.

Group Formation

You should choose your groups as soon as possible if you ravaneady done so. The design review deadline will
come up quickly, so you need your group so that you can stakimgright away. All groups should be finalized no
later than Monday, September 25th.

Your group should consist of four students in the same se¢timugh there may have to be 1-2 groups of 3 or 5
students if the number is not a multiple of 4). Feel free tothsenewsgroup to find partners, though be sure to say
which section you're in. You can also let your TA find a groupyou.

Each group or partial group should send an email to your TA wie following information for each person:
name, email address, instructional login name, and sshcpkdy (see below). Please send this email by Monday,
September 25th at the latest (earlier if possible, espgdigiou have need your TA to help you find partners).

SSH Public Key

We will be setting up a repository for version control for kagoup. As part of this process, you need to generate
an ssh public key for your instructional account (this isedént from generating a PGP public key with gpg). Please
follow these steps on pulsar.cs.berkeley.edu (or anottstrictional machine, but pulsar is known to have the right
software available).

1. Runssh-keygen -t dsa’ from your named instructional account. The default fileeamh_dsa is fine.
2. Create afile calleddenti fi cati on in your~/ . ssh directory with the following line:
| DKey i d_dsa

3. Thefile~/ . ssh/i d_dsa. pub is your public key, and this is what you should send to your TAhould contain
one line that starts witlssh- dss and then has a very long string of random-looking lettersnioers, and
symbols, followed by a string likeybur | ogi n@ul sar .

Instructions for setting up your repository will be provilen the course webpage in the near future.

System Functionality
The program must meet the following functionality requiests:

Account Each user has an account within the program. A user must issadtount to perform messaging with other
users. We will supply a list of accounts that should be in yaystem.

Messaging Any user can send a text message to any other user on his ondhay list.

Buddy List The program must maintain a list of other users that are alibte communicate with the user. These
other users are referred to as buddies. The user can only goiteite with buddies on his or her buddy list.
Thus, a user must be added to the buddy list before a conirgakes place. A user may remove buddies
from his or her buddy list. This will block all future messageom the removed buddy to the user. The exact
definition of “block” depends on implementation, but at tieeywleast blocked messages should not be displayed.

Conferencing The program must contain support for conferencing betwerddies. The user can specify two or
more buddies to participate within a conference, and onbgehin the conference can see the conversation
taking place. Thus, the user who initiates the conferencewk as the administrator, has the power to invite
to the conference when the conference is created. Addilypmay user participating in a conference has the
ability to remove himself or herself from the conference.

Implementation details

A skeleton IM client implementation based upon the Hamsara &1 will be provided. Each group will design and
implement a secure network protocol to allow the clientsaimmunicate. Specifically, each group will be implement-
ing Hamsam'’s “Protocol” interface.

When you untar the code, the first thing you will want to do is tlum GUI and take a look at what it offers. You
can run it by typing

make | aunch

Type in anything for the username and password, and thetekdlaplementation tells the GUI that you have logged
on. You can add buddies, start conferences, and chat. Whatessage you type is relayed back to you. You will
need to flesh out the underlying implementation such thairraunicates with a server and with other chat clients,
rather than merely looping back to itself. Now take a lookhatdode for this skeleton, which is found in

. I'hansan prot ocol / secure

Read the code and the comments. We do not provide any netwocdkide whatsoever, you must write that
yourself. Hamsam provides a GUI only, and the skeletontiiites how to communicate with the GUI. It is up to
each group to design their own architecture. Keeping in rttikedfunctionality and security goals, as well as ease of
implementation, you should consider the relative merita oéntralized server versus partially or fully decenteadiz
peer-to-peer designs. We are not providing any code to gestgoted on the server side of things, this must be written
from scratch, building on Java APIs.

Feel free to use any of the APIs provided with Java 1.5 to impl&t your project. If you come across any third
party libraries that you think will be helpful, contact yoliA. Also, if you are uncomfortable using Java for this class
let us know.

You will need to write code to open network connections toatahosts, and send and receive data over those
connections. The standard way to do this is via the SocketsJsWa provides a simple interface to sockets, which
you can learn about here:

http://]ava. sun. com docs/ books/tutori al / net wor ki ng/ socket s/ i ndex. ht m

Implementation Notes

When you click the Add Buddy button, hamsam provides a winddwene you can type in the buddy name. The Add
Buddy window also asks you type in a group. You can ignore t¥@ can add any buddies you want, your buddy
does not have to give approval before being added. Howev&sniebody is on your buddy list but you are not on
theirs, then when you send a message to them, the message Witcked.

The way to send a message to one person is to click on their aameur buddy list, then click 'Chat with’. To
initiate a conference, shift-click or control-click to higght multiple names, then click Chat with. While the user
interface may appear similar when it comes to chatting with person as compared to chatting with multiple, note
that the underlying implementation is distinct. Chattinghwnultiple people is a conference, which involves diffare
functions and objects.

The hamsam GUI runs in the same thread as the callback cadis #ivated when the user clicks on the GUI.
This means that if an action is taken which will take a sigaificamount of time, such as waiting for the next message
to come across the network, then the GUI will become unresipen A good way to fix this is to create a separate
thread for receiving messages.

You are not expected to create a user interface for addingeandving accounts. It is fine to build a fixed set of
accounts into your system. We will supply a list of accouhts tmust be in your system, and you are free to have
more accounts as well.

Important Change In Security Assumptions

Assume that the machines on which your chat systems runcakylsecure. This means you nem consider attacks
where the attacker is logged on to or has physical acces® tm#thines running the client or server. In particular,
feel free to store passwords and secret keys in plaintexte Mt this is a relaxation on the security requirements
compared to what was originally given. Assume that the kttastill has full control over the network, thus it is still
not allowed to transmit secrets in plaintext across the oktw

Security Requirements
The program must meet the following security requirements:

Authentication The owner of the account is the person who created it. Once@ouat is created, only the owner
can access it unless the owner divulges secret informatiotherwise disobeys the authentication protocol.

Confidentiality Sent messages can only be viewed by the buddy or buddieslédda receive them. Thus, no one
other than the intended recipient(s) should be able to rezsbsages from the sender.

Integrity Sent messages cannot be altered by a third party. All messags be protected from modification between
sender and receiver.

Cryptography APIs

As part of your project, you will need to use some cryptografimctions. While you are free to use any implemen-
tation you like, we recommend Java’s built-in cryptograpgtBi, the JCE (Java Cryptography Extension). The JCE
classes can be found in the packageax. crypt o, and you might also exploiieava. security (both are included
in J2SE 5.0).

The best place to start learning how to use the JCE is probaélJCE Reference Guide”:

http://java.sun.contj2se/ 1. 5.0/ docs/ gui de/ security/|jcel JCERef Gui de. ht

The quickest way to get going will be to skip down to the Codarggles and refer to other parts, and the javadocs,
as needed. Appendix A lists the names that you can choosewran selecting the algorithm, mode, etc.
If you want more information and specifications, look here:

http://java.sun.contj2se/1.5.0/docs/ gui de/ security/ CryptoSpec. htn

Or, for a lot more security-related information (most of athis completely irrelevant to this project):

http://java.sun.contj2se/ 1. 5.0/ docs/ gui de/ security/

Development and Testing

For your development and testing of this project, you wiNédaccess to the DETER network emulator and testbed
(seehttp://www. i si.deterlab. net). Details on using this resource will be provided on the sewebpage in the
near future.

Design Review

Before implementing your design, your group will preseatsystem architecture to your TA. First, each group will
submit their design documentation to their TA. Please udg PDstscript, HTML, or plain text. Your TA will schedule

a meeting with you shortly thereafter to review the desighe Teview will cover the Security Goals, Threat Model,
and Attack Analysis that your group produced when desigttiegsystem, as well as the architecture that your group
plans to implement. This will be an excellent opportunity your TA to provide you with feedback on your design
and answer any remaining questions your group may have.

Design Document Specification

Writing a design document will help you to thoroughly thinkuyalesign through, before beginning coding. You
should not write any code before the design document is cetepind has been reviewed with your TA. However,
you should look at the provided skeleton code first, as thliscleirify what parts you need to write and what parts we
provide.

Your design document should address the following topics.

Protocol Overview Describe your design at a very high level. How do systemsarthnetwork communicate with
each other? What messages do they send and what is the pufpesh one?

Security Model Develop a security model for your system. Follow the outlmevided during lecture 2. Consider
the goals, motivations, and capabilities the attacker Béscuss which attacks you are defending against, and
which you are not, and why.

Module Descriptions The purpose of the design document is to force you to thinky&ioally about your system.

A standard technique for understanding systems is to break tlown into modules. Note that a module is a
conceptual tool to help you think in an organized way. It it adava construct such as a class or method. A
module may correspond to a class, or several classes mayupake: module. In a non-object-oriented system,
a module might not be reflected directly in the language atla modules might just be groups of functions
that work together in performing a task. A module is any pagubsystem of a larger system. A module may
itself be decomposable into other modules that each prgadeof the parent module’s functionality and hide
some of the parent module’s secrets. A module decomposablether modules is called an internal module;
a module that is not decomposable into other modules isctalleaf module. Internal modules tend not to
have internal computational structure, serving insteagragping mechanisms for their component modules.
Leaf modules, conversely, have a rich internal computatistructure. Certain information is relevant for every
module in a module description, but some information maybeatelevant for all modules. Use your discretion
about how much information is necessary to help us undetstanr design. Information that may be relevant
for your modules includes the following:

Module Behavior Explanation of a module’s behavior includes (1) a catalogpefoperations it provides, with
descriptions of their input and output and their externeaithjble effects, and (2) a catalog of the data types
and objects that the module provides.

Assumptions A module’s assumptions are the conditions that must befigatifor an implementation of the
module to work. For example, a file processing module migbtiae that a file passed to it is open and
readable.

Secrets The implementation details hidden from other modules ms$ite module under discussion must be
listed.

Error Handling Errors and exceptional conditions that may be encounteyethd module must be listed,
along with their causes, and the strategy used to handle them

Uses RelationshipsA module uses another module if some function provided byatter is called somewhere
in the implementation of the former. Uses relationshipsimgortant because they show the modules on
which each module depends for its correctness.

Implementation Details This section should discuss any security critical algonghthat your system will use. It
should provide an overview of the algorithm and a descniptyd the security guarantees that you hope to
achieve by using the algorithm. Use pseudo code at youradient but real Java code is inappropriate. Explain
how you plan to make use of cryptographic tools. (For ingtamdich certificates and keys, if any, are present
in the system and who has access to them, how connections@nely initiated, and so on.)

Describe your protocol, including what messages are semsiponse to what user action, what responses the
system will take when receiving messages, and the ways ichithe messages trigger changes of state.

Rationale This section explanation design decisions, listing thera#itives explored, and justifying the design deci-
sions that were made.

Glossary As in other development documents, a glossary should beda@¥o minimize confusion about technical
terms.

Please limit your document to no more than 5 pages. Less igfi@enore concise you can make it without giving
up clarity or content, the better.

For those of you that have taken CS 162 or another class thaites a design document, note that we want you
to focus on the security properties of your design. We walietable to read your design document, and understand
the security model of your system, and be convinced that yibypkeduce a secure implementation of the protocol.

Submission Instructions

For the design review, all you have to do is send your desigamient to your TA via email by the deadline.
The details of the final project submission procedure wilbizde available at a later time.

Documentation

This section pertains to the final submission.

In addition to your design review document, your group wel fesponsible for providing clear documentation
of your project implementation. This final document mustiide your design documentation (revised from the
design review if necessary), implementation details, appate “README” information, and a security analysis
explaining why your project meets the security requirerneRtease use PDF, Postscript, HTML, or plain text for all
documentation.

Final Design Document

This document can be reused from your original design doatinee reflect changes you have made in your initial
design. If you make changes, please make it clear in the feralan which parts have changed and what the changes
are.

Security Analysis Document

Give a convincing argument for why you think your system ragké security requirements. Explain what steps you
took to ensure that only the owner of an account can accesadbaunt. Show why you think an attacker will not be
able to intercept and read messages, and why an attacked i@uinable to alter a message in transit.

It is not sufficient to simply state that you use encryptionha java security toolkit to solve your problems. You
must explain specifically the manner in which these toolp lyelu achieve your goals, and you should explain how
you used them appropriately and correctly.

Denial of Service (DoS) Resistance

We would like you to think about how resilient your system nieyin the face of a denial of service attack, though
you do not have to address this in your implementation.

Assume a DoS adversary is present on the network where ystaminrmessenger is running. This adversary may
carry out attacks that include, but are not limited to, cemgtion or overload of system or network resources, such as,
bandwidth, disk space, or CPU cycles.

You may assume that the adversary’s resources are similaose of the computer(s) the adversary is attacking,
so you do not need to worry about attackers that launch blig&d denial of service (DDoS) attacks from machines
outside of the instant messaging network. It is assumedtbatdversary has the ability to control the network and one
or two clients. In your final writeup, include a section whgoe analyze your system in terms of its ability to withstand
denial of service attacks. If your system is resistant to Bo$ attacks, explain why. If your system is vulnerable
to an attack, discuss how you would have done your projeferdifitly if DoS resistance had been a requirement. If
you think that certain DoS attacks cannot be defended again®atter how clever you are in designing your system,
explain this as well.

Source Code

Include working source code. This must contain any files sssgy to run your chat system.

README

Include a README file containing the names and logins of adlugr members. Also, detail how to install and run the
code, especially if there are any unusual steps.

Slip Days

Each group is permitted 3 slip days for the entire semestprdgjgcts). Once a group misses the deadline for a project
(11:59 pm of the deadline day), one entire slip day will bedusslip days cannot be partitioned.

Grading

The following is the grade breakdown for Project 1:

Design Review: 15%

Working Chat Functionality : 20%

Meeting The Security Goals : 50%

Final Documentation : 15%

Note that it will be difficult or impossible to meet the se¢ydoals if the chat functionality is not in place and working

