Practice Questions
CS161 Computer Security, Fall 2008

Name
Email address
Score % / 100 %

Please do not forget to fill up your name, email in the box in the midterm
exam — you can skip this here. These practice questions are not intended
to be comprehensive for preparation or too closely representative of the
midterm questions in any way. They are mereley intended to be used for
initiating discussions, and help you identify your personal weaknesses that
you need to emphasize on during preparation.

1.

Terms Definitions

. Explain the following terms, in no more than 2 sentences.

(a) (1 point) Nonce

(b) (1 point) (n,t) threshold secret sharing scheme.

(¢) (1 point) Known-plaintext attack

(d) (1 point) Time Of Check to Time Of Use bug.

2. True/False with Reason

For each of the statements below, state whether they are true or false.
Explain your answer in at most 2 sentences.
(a) (2 points) T/F: Suppose Alice generates a RSA public and private
key pair, and publishes the public key. Then that’s all that is needed for
Alice to be able to receive a securely encrypted email from Bob.

(b) (2 points) T/F:If a cryptographic hash function is second preimage
resistant, it implies that it is also collision resistant.

(c) (2 points) Let g be a generator for a prime p. Recall that the compu-
tational Diffie-Hellman problem is the task of computing ¢*® mod p, given
g® mod p and ¢ mod p, where a and b are random exponents between 0 and
(p—1).

T/F: If the discrete logarithm problem can be efficiently solved then the
computational Diffie-Hellman problem can be efficiently solved.

(d) (2 points) T/F: If we discover an efficient algorithm to compute the

GCD of two extremely large numbers, this will make it possible to break
RSA.

3. Hash Functions and MAC

A Message Authentication code (MAC) consists of two algorithms (S,V).
Algorithm S(k,m) uses a secret key k to generate an integrity tag for message
m. Alogrithm V(k,m,t) uses a secret key k to validate a given integrity tag
t for m.

Recall that a cryptographic hash function A is a non-keyed function that
outputs a short hash h(m) for an input message m. A hash function is said
to be collision resistant if it is difficult to find two distinct messages mg, m1
such that h(mg) = h(my).

Let us consider two mechanisms for providing file integrity for a single
file F on disk. The file system should be able to detect any unauthorized
modification to this file. We say that the system is secure if an attacker
cannot modify F without being detected. You can assume that the owner
of the file F has a password known to the system, but not to the attacker.

Integrity Protection Method : Compute an integrity tag for the file
F and store the integrity tag in header of F. Upon file open, the file system
checks that the integrity tag is valid.

(a) (4 points) Suppose the integrity tag is computed using a collision
resistant hash function applied to F. Validation of the integrity tag upon file
open is done by rehashing the file and comparing the result to the value in
the header of F. Is the system secure? Explain.

(b) (4 points) Suppose the integrity tag is computed as the MAC of F
using the user’s password as the MAC secret key. Is the resulting system
secure? Explain.

(¢) (4 points) Outline changes to the Integrity Protection method, de-
tailing how to store integrity tags and how to compute and validate them
using hashes and/or MAC only, such that the resulting system is secure.

4. Signatures and Encryption

Suppose Alice and Bob are employees of a company ’foobar’. All employees
of the company use RSA for encrypting and signing their emails. RSA
public keys of all employees are stored in a file on the company’s server. The
contents of this file are available for public view on foobar’s non-SSL enabled
key download web site, hosted at http://foobar.com/pubkeys.html.

The email client software used internally in the company has an email
signing feature. It works as follows. When the user clicks on the ’Sign
and Send’ button in his email client, the client software appends a special
‘signature’ tag to the regular email header before sending the email. The
‘signature’ tag contains the author’s name and date signed by the author’s
RSA private key.

The receiver’s email client software automatically verifies the signature
tag, if present, by first obtaining the RSA public key of the sender from the
foobar’s key web site. It then verifies that the email sender’s name and the
date in the regular email header matches the signed name and date in the
signature tag.

(a) (4 points) Suppose Alice receives a signed, but unencrypted email
from Bob saying that he has approved her month long vacation. Explain
why the email client gives a completely false sense of security, by outlining
two different! attacks that allow Mallory to send such an email and make it
appear as if it is sent by Bob. You can assume that email header fields are
spoofable (i.e Mallory can alter the date and the sender fields in a regular
email header to reflect that someone else has sent email).

Attack 1:

Attack 2:

b different’ here means that there are separate fixes for each attack

(b) (4 points) Suggest two fixes, one for each attack described in part

(a)

Fix for attack 1:

Fix for attack 2:

(c) (8 points) Suppose a curious employee, Eve, is able to break into the
server and alter the file containing RSA public keys. How should Eve alter
that file so that she can read confidential, encrypted emails sent between
Alice and Bob.

(d) (3 points) How can Alice and/or Bob detect Eve’s intrusion.

5. Authentication Protocols

Alice and Bob share a secret key K. Suppose that someone suggests the
following methods to allow Alice to securely authenticate to Bob.

(a) (5 points) Bob generates a random message r, enciphers it using
K under a secure block cipher scheme and sends the encrypted message
to Alice. Alice decrypts it, adds 1 to it and sends the result encrypted
with K under the same block cipher to Bob. Bob decrypts the message and
compares it with r. If the difference is 1, then he is sure he is communicating
with Alice; or else, as no one else knows the secret K, he is talking to an
impersonator. Is this protocol secure? Why or why not.

6. Reasoning about Code

Consider the following program and postcondition:

1. i = n;

2. product = 1;

3. while (i>k) do

4. product = product * i;

5 i=i-1;

6. end

7. /* Post-Condition : {product = (n!/k!)} */

You may assume all values are integers. The operator ! in the above
code denotes factorial.

(a) (8 points) Determine the loop invariant I, that holds true at the end
of each iteration of the loop. I must include relation between variables i, n,
product, and k.

(b) (8 points) Write the precondition P as a logical expression, that must
hold true at the start of the program for the postcondition on line 7 to hold
true.

(¢) (2 points) Argue that the program fragment always terminates, for
any input that satisfies P.

10

7. Program Errors

This question is intended to give you practice at spotting program errors.
Identify as many errors as possible.

/* EncryptedLength: Returns the maximum number of bytes that ’src’
will be encrypted to (not including any NULL-termination). */
int EncryptedLength(uint8_t *src, uint32_t srclen);

/* Encrypt8bit: Encrypts ’src’ into ’dest’, using ’key’. Block size is 8
bits. Does not NULL-terminate. Returns the size of the
encrypted string on success or -1 on failure. */
int Encrypt8bit (uint8_t #*src, char * dest, , uint32_t srclen, uint32_t destsize, char key);

/* Encrypt: Encrypts the binary data in ’data’ into a NULL-terminated
character string returned in ’s’. Returns size of encrypted string
on success, 0 on failure. */
int Encrypt (uint8_t *data, char **s, size_t datalen)
{
Bool succeeded;
int size;

*s = (char *) malloc(EncryptedLength(data, datalen));
size = Encrypt8bit(data, s, dataSize, EncryptedLength (data, datalen), O0xBC);
if (size < 0) {

free (s);

size = 0;

goto terminate;

succeeded = size;

terminate:
return succeeded;

11

