
1

Bug Finding

Dawn Song
dawnsong@cs.berkeley.edu

2

Review
• Memory-safety vulnerabilities

– Buffer overflow
– Format string
– Integer overflow
– Double free

• Runtime detection
– Runtime bounds check

» Purify, Jones & kelly
» Expensive

– Runtime detection of overwrite
» Stackguard, etc.
» Practical, but only cover certain types of attacks

– Runtime mitigation to make attacks hard
» Randomization
» Practical, but not fool proof

3

This Class: Bug Finding
• The iPhone story
• Blackbox bug finding
• Whitebox bug finding

4

IPhone Security Flaw
• Jul 2007: “researchers at Independent Security

Evaluators, said that they could take control of iPhones
through a WiFi connection or by tricking users into going
to a Web site that contains malicious code. The hack, the
first reported, allowed them to tap the wealth of personal
information the phones contain.”

Charles Miller, shown on his iPhone,
said that after finding a hole in security, “you were in complete control.”

5

iPhone attack

• iPhone Safari downloads malicious web page
– Arbitrary code is run with administrative privileges
– Can read SMS log, address book, call history, other data
– Can perform physical actions on the phone.

» system sound and vibrate the phone for a second
» could dial phone numbers, send text messages, or record
audio (as a bugging device)

– Can transmit any collected data over network to attacker

See http://www.securityevaluators.com/iphone/

5
6

0days Are a Hacker Obsession
• An 0day is a vulnerability that’s not publicly

known

• Modern 0days often combine multiple attack
vectors & vulnerabilities into one exploit

– Many of these are used only once on high value targets

• 0day statistics
– Often open for months, sometimes years

7

Market for 0days
• Sell for $10K-100K
• Tippingpoint
• Eeye
• Gleg.net
• Dsquare
• Idefense
• Digital armaments
• Breakingpoint

8

How to Find a 0day?
• Step #1: obtain information

– Hardware, software information
– Sometimes the hardest step

» eBay to the rescue

• Step #2: bug finding
– Manual audit
– (semi)automated techniques/tools

9

The iPhone Story
• Step #1: WebKit opensource

– svn co http://svn.webkit.org/repository/webkit/trunk
WebKit

• Step #2: identify potential focus points
– From development site:

The JavaScriptCore Tests
“If you are making changes to JavaScriptCore, there
is an additional test suite you must rn before landing
changes. This is the Mozilla JavaScript test suite.”

– So we know what they use for unit testing
» Use code coverage to see which portions of code is not well

tested
» Tools gcov, icov, etc., measure test coverage

10

Results
• 59.3% of 13622 lines in JavaScriptCore were

covered
– 79.3% of main engine covered
– 54.7% of Perl Compatible Regular Expression (PCRE)

covered
• Next step: focus on PCRE

– Wrote a PCRE fuzzer (20 lines of perl)
– Ran it on standalone PCRE parser (pcredemo from

PCRE library)
– Started getting errors:

PCRE compilation failed at offset 6: internal error: code
overflow

• Evil regular expressions crash mobileSafari

11

The Art of Fuzzing

• Automaticly generate test cases
• Many slightly anomalous test cases are input into a

target interface
• Application is monitored for errors
• Inputs are generally either file based (.pdf, .png, .wav,

.mpg)
• Or network based…

– http, SNMP, SOAP

12

Trivial Example
• Standard HTTP GET request

– GET /index.html HTTP/1.1

• Anomalous requests
– AAAAAA...AAAA /index.html HTTP/1.1
– GET ///////index.html HTTP/1.1
– GET %n%n%n%n%n%n.html HTTP/1.1
– GET /AAAAAAAAAAAAA.html HTTP/1.1
– GET /index.html HTTTTTTTTTTTTTP/1.1
– GET /index.html HTTP/1.1.1.1.1.1.1.1

13

Regression vs. Fuzzing
• Regression: Run program on many normal

inputs, look for badness.
– Goal: Prevent normal users from encountering errors

(e.g. assertions bad).

• Fuzzing: Run program on many abnormal inputs,
look for badness.

– Goal: Prevent attackers from encountering exploitable
errors (e.g. assertions often ok)

14

Approach I: Black-box Fuzz Testing
• Given a program, simply feed it random inputs,

see whether it crashes
• Advantage: really easy
• Disadvantage: inefficient

– Input often requires structures, random inputs are
likely to be malformed

– Inputs that would trigger a crash is a very small
fraction, probability of getting lucky may be very low

15

Enhancement I: Mutation-Based Fuzzing

• Take a well-formed input, randomly perturb (flipping bit, etc.)

• Little or no knowledge of the structure of the inputs is assumed

• Anomalies are added to existing valid inputs

• Anomalies may be completely random or follow some heuristics
(e.g. remove NUL, shift character forward)

• Examples:
– E.g., ZZUF, very successful at finding bugs in many real-world

programs, http://sam.zoy.org/zzuf/
– Taof, GPF, ProxyFuzz, FileFuzz, Filep, etc.

16

Example: fuzzing a pdf viewer
• Google for .pdf (about 1 billion results)
• Crawl pages to build a corpus
• Use fuzzing tool (or script to)

1. Grab a file
2. Mutate that file
3. Feed it to the program
4. Record if it crashed (and input that crashed it)

17

Mutation-based Fuzzing In Short
• Strengths

– Super easy to setup and automate
– Little to no protocol knowledge required

• Weaknesses
– Limited by initial corpus
– May fail for protocols with checksums, those which depend on

challenge response, etc.

18

Enhancement II: Generation-Based Fuzzing

• Test cases are generated from some
description of the format: RFC,
documentation, etc.
– Using specified protocols/file format info
– E.g., SPIKE by Immunity

http://www.immunitysec.com/resources-
freesoftware.shtml

• Anomalies are added to each possible spot
in the inputs

• Knowledge of protocol should give better
results than random fuzzing

19

Example: Protocol Description
//png.spk
//author: Charlie Miller

// Header - fixed.
s_binary("89504E470D0A1A0A");

// IHDRChunk
s_binary_block_size_word_bigendian("IHDR"); //size of data field
s_block_start("IHDRcrc");

s_string("IHDR"); // type
s_block_start("IHDR");

// The following becomes s_int_variable for variable stuff
// 1=BINARYBIGENDIAN, 3=ONEBYE

s_push_int(0x1a, 1); // Width
s_push_int(0x14, 1); // Height
s_push_int(0x8, 3); // Bit Depth - should be 1,2,4,8,16, based on colortype
s_push_int(0x3, 3); // ColorType - should be 0,2,3,4,6
s_binary("00 00"); // Compression || Filter - shall be 00 00
s_push_int(0x0, 3); // Interlace - should be 0,1

s_block_end("IHDR");
s_binary_block_crc_word_littleendian("IHDRcrc"); // crc of type and data
s_block_end("IHDRcrc");
...

20

Generation-Based Fuzzing In Short
• Strengths

– completeness
– Can deal with complex dependencies e.g. checksums

• Weaknesses
– Have to have spec of protocol

» Often can find good tools for existing protocols e.g. http, SNMP
– Writing generator can be labor intensive for complex protocols
– The spec is not the code

21

Fuzzing Tools
• Hackers’ job made easy
• Input generation
• Input injection
• Bug detection
• Workflow automation

22

Input Generation
• Existing generational fuzzers for common protocols (ftp,

http, SNMP, etc.)
– Mu-4000, Codenomicon, PROTOS, FTPFuzz

• Fuzzing Frameworks: You provide a spec, they provide a
fuzz set

– SPIKE, Peach, Sulley
• Dumb Fuzzing automated: you provide the files or packet

traces, they provide the fuzz sets
– Filep, Taof, GPF, ProxyFuzz, PeachShark

• Many special purpose fuzzers already exist as well
– ActiveX (AxMan), regular expressions, etc.

23

Input Injection

• Simplest
– Run program on fuzzed file
– Replay fuzzed packet trace

• Modify existing program/client
– Invoke fuzzer at appropriate point

• Use fuzzing framework
– e.g. Peach automates generating COM interface fuzzers

24

Bug Detection
• See if program crashed

– Type of crash can tell a lot (SEGV vs. assert fail)
• Run program under dynamic memory error

detector (valgrind/purify)
– Catch more bugs, but more expensive per run.

• See if program locks up
• Roll your own checker e.g. valgrind skins

25

Workflow Automation
• Sulley, Peach, Mu-4000 all provide tools to

aid setup, running, recording, etc.
• Virtual machines can help create

reproducable workload

26

How Much Fuzz Is Enough?
• Mutation based fuzzers may generate an infinite

number of test cases... When has the fuzzer run
long enough?

• Generation based fuzzers may generate a finite
number of test cases. What happens when
they’re all run and no bugs are found?

27

Example: PDF
• I have a PDF file with 248,000 bytes
• There is one byte that, if changed to particular values,

causes a crash
– This byte is 94% of the way through the file

• Any single random mutation to the file has a
probability of .00000392 of finding the crash

• On average, need 127,512 test cases to find it
• At 2 seconds a test case, thats just under 3 days...
• It could take a week or more...

28

Code Coverage
• Some of the answers to these questions

lie in code coverage
• Code coverage is a metric which can be

used to determine how much code has
been executed.

• Data can be obtained using a variety of
profiling tools. e.g. gcov

29

Types of Code Coverage
• Line/block coverage

– Measures how many lines of source code have been
executed.

• Branch coverage
– Measures how many branches in code have been

taken (conditional jmps)
• Path coverage

– Measures how many paths have been taken

30

Example

• Requires
– 1 test case for line coverage
– 2 test cases for branch coverage
– 4 test cases for path coverage

» i.e. (a,b) = {(0,0), (3,0), (0,3), (3,3)}

if(a > 2)
a = 2;
if(b > 2)
b = 2;

31

Code Coverage
• Benefits:

– How good is this initial file?
– Am I getting stuck somewhere?
if(packet[0x10] < 7) { //hot path
} else { //cold path

}

– How good is fuzzer X vs. fuzzer Y
– Am I getting benefits from running a different fuzzer?

• Problems:
– Code can be covered without revealing bugs

mySafeCpy(char *dst, char* src){
if(dst && src)

strcpy(dst, src);
}

32

Fuzzing Rules of Thumb
• Protocol specific knowledge very helpful

– Generational tends to beat random, better spec’s make better
fuzzers

• More fuzzers is better
– Each implementation will vary, different fuzzers find different

bugs
• The longer you run, the more bugs you may find
• Best results come from guiding the process

– Notice where your getting stuck, use profiling!
• Code coverage can be very useful for guiding the process
• Can we do better?

33

Administravia
• Proj 1 out
• Hw2

Mean: 32.3
Standard deviation: 3.0
Minimum: 23.0
1st quartile: 30.0
2nd quartile (median): 33.8
3rd quartile: 35.0
Maximum: 35.0

34

Approach II: Constraint-based
Automatic Test Case Generation

• Look inside the box
– Use the code itself to guide the fuzzing

• Assert security/safety properties
• Explore different program execution paths to

check for security properties
• Challenge:

1. For a given path, need to check whether an input can
trigger the bug, i.e., violate security property

2. Find inputs that will go down different program
execution paths

35

Running Example

• Where’s the bug?
• What’s the security/safety property?

– s>=len
• What inputs will cause violation of the security property?

– len = 232 - 1
• How likely will random testing find the bug?

f(unsigned int len){
unsigned int s;
char *buf;
if len % 2==0;
then s = len;
else s = len + 2;

buf = malloc(s);
read(fd, buf, len);
…

}

36

Running Example

if len % 2==0

s = len + 2 s = len

assert(s>=len);

buf=malloc (s);

read(fd, buf, len);

TF

37

Symbolic Execution

• Test input len=6
• No assertion failure
• What about all inputs that takes the same path as len=6?

if len % 2==0

s = len + 2 s = len

assert(s>=len);

buf=malloc (s);

read(fd, buf, len);

TF

38

Symbolic Execution

• What about all inputs that takes the same path as
len=6?

• Represent len as symbolic variable

if len % 2==0

s = len + 2 s = len

assert(s>=len);

buf=malloc (s);

read(fd, buf, len);

TF

39

Symbolic Execution
• Reprenset inputs as symbolic variables
• Perform each operation on symbolic variables

symbolically
– x = y + 5;

• Registers and memory values dependent on
inputs become symoblic expressions

• Certain conditions for conditional jump become
symbolic expressions as well

40

Symbolic Execution

• What about all inputs that takes the same path as
len=6?

• Represent len as symbolic variable

if len % 2==0

s = len + 2 s = len

assert(s>=len);

buf=malloc (s);

read(fd, buf, len);

TF

len % 2 = 0 (path constraint)

s = len

s<len?

41

Using a Solver
• Is there a value for len s.t.

len % 2 = 0 ^ s = len ^ s < len?
• Give the symbolic formula to a solver
• In this case, the solver returns No

– The formula is not satisfiable
• What does this mean?

– For any len that follows the same path as len = 6,
the execution will be safe

– Symbolic execution can check many inputs at the
same time for the same path

• What to do next?
– Try to explore different path

42

How to Explore Different Paths?

• Previous path constraint: len % 2 = 0
• Flip the branch to go down a different path:

– len % 2 != 0
• Using a solver for the formula

– A satisfying assignment is a new input to go down the path

if len % 2==0

s = len + 2 s = len

assert(s>=len);

buf=malloc (s);

read(fd, buf, len);

TF

43

Checking Assertion in the Other Path

if len % 2==0

s = len + 2 s = len

assert(s>=len);

buf=malloc (s);

read(fd, buf, len);

TF

len % 2 != 0 (path constraint)

s = len + 2

s<len?

•Is there a value for len s.t.
len % 2 != 0 ^ s = len+2 ^ s < len?
•Give the symbolic formula to a solver

•Solver returns satisfying assignment: len = 232 -1
•Found the bug! 44

Summary: Symbolic Execution for Bug Finding

• Symbolicly execute a path
– Create the formula representing:

path constraint ^ assertion failure
– Give the solver the formula

» If returns a satisfying assignment, a bug found

• Reverse condition for a branch to go down a
different path

– Give the solver the new path constraint
– If returns a satisfying assignment

» The path is feasible
» Found a new input going down a different path

• Pioneer work
– EXE, DART, CUTE

