Program Verification & Other Types of
Vulnerabilities

Dawn Song
dawnsong@cs.berkeley.edu

Review

* Memory-safety vulnerabilities
* Runtime detection
* Fuzzing for bug finding

— Blackbox fuzzing

—Whitebox fuzzing

This Class

* Program verification
+ Other types of vulnerabilities




Static Analysis

* Instead of running the code to detect attacks or
find bugs, we statically analyze code

» Simple pattern match:
—Whether program uses unsafe APIs: gets, sprintf, etc.
» Simple checks:
—E.g., variable use before def or initialization
* More sophisticated analysis
- E.g., potential array-out-of-bounds check
* Many tools available

—Open source:
http://en.wikipedia.org/wiki/List of tools for static code analysis

— Commercial tools: Coverity, Fortify, etc.

4

Program Verification

» Can we prove a program free of buffer overflows?

* How to prove a program free of buffer overflows?
—Precondition
—Postcondition
—Loop invariants

Precondition
* Functions make certain assumptions about their
arguments
— Caller must make sure assumptions are valid
—These are often called preconditions
* Precondition for £ () is an assertion (a logical
proposition) that must hold at input to £ ()
—Function £ () must behave correctly if its
preconditions are met
—If any precondition is not met, all bets are off
+ Caller must call £ () such that preconditions
true — an obligation on the caller, and callee may
freely assume obligation has been met

* The concept similarly holds for any statement or
block of statements




Simple Precondition Example

e int deref (int *p) {
return *p;
}
Unsafe to dereference a null pointer
—Impose precondition that caller of deref () must
meet: p # NULL holds at entrance to deref ()

If all callers ensure this precondition, it will be
safe to call deref ()

+ Can combine assertions using logical
connectives (and, or, implication)

— Also existentially and universally quantified logical
formulas

Another Example

© int sum(int *a[], size t n) {
int total =0, i;
for (i=0; i<n; i++)
total += *(a[i]);
return total;

* Precondition:
—a[] holds at least n elements
—Forall j.(0 £ j < n) — a[jJ#NULL

Postcondition

» Postcondition for £ () is an assertion that holds
when £ () returns
—£ () has obligation of ensuring condition is true when
it returns

— Caller may assume postcondition has been
established by £ ()

* Example:
void *mymalloc(size_t n) {

void *p = malloc(n);

if (!'p) {
perror ("Out of memory") ;
exit (1),

}

return p;

}

= Post condition: retval != NULL




Proving Precondition—Postcondition

» Given preconditions and postconditions
—Which specifies what obligations caller has and what
caller is entitled to rely upon
* Verify that, no matter how function is called, if
precondition is met at function’s entrance, then
postcondition is guaranteed to hold upon
function’s return
—Must prove that this is true for all inputs

— Otherwise, you’ve found a bug in either specification
(preconditions/postconditions) or implementation

Proving Precondition—Postcondition

» Basic idea:

—Write down a precondition and postcondition for
every line of code

—Use logical reasoning
* Requirement:

—Each statement’s postcondition must match (imply)
precondition of any following statement

— At every point between two statements, write down
invariant that must be true at that point

» Invariant is postcondition for preceding statement, and
precondition for next one

Example

+ Easy to tell if an isolated statement fits its
pre- and post-conditions
 postcondition for “v=0;" is
—v=0 (no matter what the precondition is)
— Or, if precondition for “v=v+1;” is v25, then a
valid postcondition is
» v26
« If precondition for “v=v+1;” is w<100,
then a valid postcondition is
—w<100
— Assuming v and w do not alias




Loop Invariant

« An assertion that is true at entrance to the loop, on any
path through the code
— Must be true before every loop iteration
» Both a pre- and post-condition for the loop body

« Example: Factorial function code
— /* Requires: n >= 1 */
int fact(int n) {
int i, t;
i=1;
t=1;
while (i <= n) {
t o*=i;
i++;
return t;
}
— Prerequisite: input must be at least 1 for correctness
— Prove: value of fact () is always positive

Verifying Invariant Correctness

= /* Requires: n >= 1
Ensures: retval >= 0 */
int fact(int n) {

int i, t; /* n>=1 */
i=1; /* n>=1 && i==1 */
t=1; /* n>=1 && i==1 && t==1 */

while (i <= n) {
/* 1<=i && i<=n && t>=1 <-- loop invariant */
t o *= i /* 1<=i && i<=n && t>=1 */
it4; /* 2<=i && i<=n+l && t>=1 */
/* i>n && t>=1 */
return t;
}
Easy if we examine each step:
— Function’s precondition implies invariant at function body start
— Invariant at end of function body implies function’s postcondition

— If each statement matches invariant immediately before and after it,
everything’s OK
That leaves the loop invariant...

Verifying the Loop Invariant
Loop invariant: 1<=i && i<=n && t>=1
Prove it is true at start of first loop iteration
— Follows from:

»n2l A i=l A t=1 — 15isn A t21

» if i=1, then certainly i21
Prove that if it holds at start of any loop iteration, then it
holds at start of next iteration (if there’s one)

— True, since invariant at end of loop body 2<i<n+1 A t21 and
loop termination condition i<n implies invariant at start of loop
body 1<i<n A t21

Follows by induction on number of iterations that loop
invariant is always true on entrance to loop body

— Thus, fact () will always make postcondition true, as
precondition is established by its caller




Function Post-/Pre-Conditions

+ Any time we see a function call, we have
to verify that its precondition will be met
—Then we can conclude its postcondition holds
and use this fact in our reasoning
+ Annotating every function with pre- and
post-conditions enables modular
reasoning
— Can verify function £ () by looking only its

code and the annotations on every function
£ () calls

» Can ignore code of all other functions and functions
called transitively
—Makes reasoning about £ () an almost purely
local activity

Documentation

* Pre-/post-conditions serve as useful
documentation
—To invoke Bob’s code, Alice only has to look at
pre- and post-conditions — she doesn’t need to
look at or understand his code
» Useful way to coordinate activity between
multiple programmers:
—Each module assigned to one programmer, and

pre-/post-conditions are a contract between caller
and callee

— Alice and Bob can negotiate the interface (and
responsibilities) between their code at design time

Avoiding Security Holes

» To avoid security holes (or program crashes)
—Some implicit requirements code must meet
» Must not divide by zero, make out-of-bounds memory
accesses, or deference null ptrs, ...
* We can try to prove that code meets these
requirements using same style of reasoning
— Ex: when a pointer is dereferenced, there is an
implicit precondition that pointer is non-null and in-
bounds




Proving Array Accesses are in-bounds

e /* Requires: a != NULL and a[] holds n elements */
int sum(int a[], size_t n) {
int total = 0, i;
for (i=0; i<n; i++)
/* Loop invariant: 0 <= i < n */
total += al[i];
return total;

}
« Loop invariant true at entrance to first iteration
— First iteration ensures i=0
« lItis true at entrance to subsequent iterations

— Loop termination condition ensures i<n, and i only
increases

+ So array access a[i] is within bounds

Buffer Overruns

* Proving absence of buffer overruns might
be much more difficult
—Depends on how code is structured

* Instead of structuring your code so that it
is hard to provide a proof of no buffer
overruns, restructure it to make absence
of buffer overruns more evident

* Lots of research into automated theorem
provers to try to mathematically prove
validity of alleged pre-/post-conditions

—Or to help infer such invariants

Administravia

* Hw3 out
* Project partner




User/Kernel Pointer Bugs

« An important class of bugs
*int x;

void sys_setint (int *p)

{ memcpy(&x, p, sizeof(x));

void sys-getint (int *p)
{ memcpy(p, &x, sizeof(x));

+ Can cause system hang, crash kernel,
gain root privileges, read secret data from
kernel buffers

Non-Language-Specific Vulnerabilities

= int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S_ISRREG(s.st mode)) {
error ("only regular files allowed!");
return -1;

}
return open(path, O_RDONLY) ;
}

» Code to open only regular files
—Not symlink, directory, nor special device

» On Unix, uses stat () call to extract file’s
meta-data

* Then, uses open () call to open the file

The Flaw?

» Code assumes FS is unchanged between stat ()
and open () calls — Never assume anything...

» An attacker could change file referred to by path
in between stat () and open ()
—From regular file to another kind
— Bypasses the check in the code!

—If check was a security check, attacker can subvert
system security

» Time-Of-Check To Time-Of-Use (TOCTTOU)
vulnerability

—Meaning of path changed from time it is checked
(stat()) and time it is used (open())




TOCTTOU Vulnerability

* In Unix, often occurs with filesystem calls
because system calls are not atomic

* But, TOCTTOU vulnerabilities can arise

anywhere there is mutable state shared
between two or more entities

—Example: multi-threaded Java servlets and
applications are at risk for TOCTTOU




