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Review
• Memory-safety vulnerabilities
• Runtime detection
• Fuzzing for bug finding

– Blackbox fuzzing
– Whitebox fuzzing
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This Class
• Program verification
• Other types of vulnerabilities



4

Static Analysis
• Instead of running the code to detect attacks or 

find bugs, we statically analyze code
• Simple pattern match:

– Whether program uses unsafe APIs: gets, sprintf, etc.
• Simple checks:

– E.g., variable use before def or initialization
• More sophisticated analysis

– E.g., potential array-out-of-bounds check
• Many tools available

– Open source: 
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

– Commercial tools: Coverity, Fortify, etc.
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Program Verification
• Can we prove a program free of buffer overflows?

• How to prove a program free of buffer overflows?
– Precondition
– Postcondition
– Loop invariants
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Precondition
• Functions make certain assumptions about their 

arguments
– Caller must make sure assumptions are valid
– These are often called preconditions

• Precondition for f() is an assertion (a logical 
proposition) that must hold at input to f()

– Function f() must behave correctly if its 
preconditions are met

– If any precondition is not met, all bets are off
• Caller must call f() such that preconditions 

true – an obligation on the caller, and callee may 
freely assume obligation has been met

• The concept similarly holds for any statement or 
block of statements
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Simple Precondition Example
• int deref(int *p) {

return *p;
}

• Unsafe to dereference a null pointer
– Impose precondition that caller of deref() must 

meet: p ≠ NULL holds at entrance to deref()
• If all callers ensure this precondition, it will be 

safe to call deref()
• Can combine assertions using logical 

connectives (and, or, implication)
– Also existentially and universally quantified logical 

formulas
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Another Example
• int sum(int *a[], size_t n) {

int total = 0, i;
for (i=0; i<n; i++)

total += *(a[i]);
return total;

}

• Precondition: 
– a[] holds at least n elements
– Forall j.(0 ≤ j < n) → a[j]≠NULL
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Postcondition
• Postcondition for f() is an assertion that holds 

when f() returns
–f() has obligation of ensuring condition is true when 

it returns
– Caller may assume postcondition has been 

established by f()
• Example:

void *mymalloc(size_t n) {
void *p = malloc(n);
if (!p) {

perror("Out of memory");
exit(1);

}
return p;

}
• Post condition: retval != NULL
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Proving Precondition→Postcondition

• Given preconditions and postconditions
– Which specifies what obligations caller has and what 

caller is entitled to rely upon
• Verify that, no matter how function is called, if 

precondition is met at function’s entrance, then 
postcondition is guaranteed to hold upon 
function’s return 

– Must prove that this is true for all inputs
– Otherwise, you’ve found a bug in either specification 

(preconditions/postconditions) or implementation
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Proving Precondition→Postcondition
• Basic idea:

– Write down a precondition and postcondition for 
every line of code

– Use logical reasoning
• Requirement:

– Each statement’s postcondition must match (imply) 
precondition of any following statement

– At every point between two statements, write down 
invariant that must be true at that point

» Invariant is postcondition for preceding statement, and 
precondition for next one
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Example
• Easy to tell if an isolated statement fits its 

pre- and post-conditions
• postcondition for “v=0;” is 

–v=0 (no matter what the precondition is)
– Or, if precondition for “v=v+1;” is v≥5, then a 

valid postcondition is
» v≥6

• If precondition for “v=v+1;” is w≤100, 
then a valid postcondition is 

–w≤100
– Assuming v and w do not alias
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Loop Invariant
• An assertion that is true at entrance to the loop, on any 

path through the code
– Must be true before every loop iteration

» Both a pre- and post-condition for the loop body

• Example: Factorial function code
– /* Requires: n >= 1 */
int fact(int n) {

int i, t;
i = 1;
t = 1;
while (i <= n) {

t *= i;
i++;

}
return t;

}

– Prerequisite: input must be at least 1 for correctness
– Prove: value of fact() is always positive
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Verifying Invariant Correctness
• /* Requires: n >= 1

Ensures: retval >= 0 */
int fact(int n) {

int i, t;         /* n>=1 */
i = 1;            /* n>=1 && i==1 */
t = 1;            /* n>=1 && i==1 && t==1 */
while (i <= n) {

/* 1<=i && i<=n && t>=1   <-- loop invariant */
t *= i;         /* 1<=i && i<=n && t>=1 */
i++;            /* 2<=i && i<=n+1 && t>=1 */

}                  /* i>n && t>=1 */
return t;

}

• Easy if we examine each step:
– Function’s precondition implies invariant at function body start
– Invariant at end of function body implies function’s postcondition
– If each statement matches invariant immediately before and after it, 

everything’s OK
• That leaves the loop invariant…
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Verifying the Loop Invariant
• Loop invariant: 1<=i && i<=n && t>=1
• Prove it is true at start of first loop iteration

– Follows from: 
» n≥1 ∧ i=1 ∧ t=1 → 1≤i≤n ∧ t≥1
» if i=1, then certainly i≥1 

• Prove that if it holds at start of any loop iteration, then it 
holds at start of next iteration (if there’s one)

– True, since invariant at end of loop body 2≤i≤n+1 ∧ t≥1 and 
loop termination condition i≤n implies invariant at start of loop 
body 1≤i≤n ∧ t≥1

• Follows by induction on number of iterations that loop 
invariant is always true on entrance to loop body

– Thus, fact() will always make postcondition true, as 
precondition is established by its caller
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Function Post-/Pre-Conditions
• Any time we see a function call, we have 

to verify that its precondition will be met
– Then we can conclude its postcondition holds 

and use this fact in our reasoning
• Annotating every function with pre- and 

post-conditions enables modular 
reasoning

– Can verify function f() by looking only its 
code and the annotations on every function 
f() calls

» Can ignore code of all other functions and functions 
called transitively

– Makes reasoning about f() an almost purely 
local activity
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Documentation
• Pre-/post-conditions serve as useful 

documentation
– To invoke Bob’s code, Alice only has to look at 

pre- and post-conditions – she doesn’t need to 
look at or understand his code

• Useful way to coordinate activity between 
multiple programmers:

– Each module assigned to one programmer, and 
pre-/post-conditions are a contract between caller 
and callee

– Alice and Bob can negotiate the interface (and 
responsibilities) between their code at design time
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Avoiding Security Holes
• To avoid security holes (or program crashes)

– Some implicit requirements code must meet
» Must not divide by zero, make out-of-bounds memory 

accesses, or deference null ptrs, …

• We can try to prove that code meets these 
requirements using same style of reasoning

– Ex: when a pointer is dereferenced, there is an 
implicit precondition that pointer is non-null and in-
bounds
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Proving Array Accesses are in-bounds

• /* Requires: a != NULL and a[] holds n elements */
int sum(int a[], size_t n) {

int total = 0, i;
for (i=0; i<n; i++)

/* Loop invariant: 0 <= i < n */
total += a[i];

return total;
}

• Loop invariant true at entrance to first iteration
– First iteration ensures i=0

• It is true at entrance to subsequent iterations
– Loop termination condition ensures i<n, and i only 

increases
• So array access a[i] is within bounds
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Buffer Overruns
• Proving absence of buffer overruns might 

be much more difficult
– Depends on how code is structured

• Instead of structuring your code so that it 
is hard to provide a proof of no buffer 
overruns, restructure it to make absence 
of buffer overruns more evident

• Lots of research into automated theorem 
provers to try to mathematically prove 
validity of alleged pre-/post-conditions

– Or to help infer such invariants
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Administravia
• Hw3 out
• Project partner
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User/Kernel Pointer Bugs
• An important class of bugs
• int x;

void sys_setint (int *p)
{ memcpy(&x, p, sizeof(x));
}
void sys-getint (int *p)
{ memcpy(p, &x, sizeof(x));
}

• Can cause system hang, crash kernel, 
gain root privileges, read secret data from 
kernel buffers
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Non-Language-Specific Vulnerabilities

• int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only regular files allowed!");
return -1;

}
return open(path, O_RDONLY);

}

• Code to open only regular files
– Not symlink, directory, nor special device

• On Unix, uses stat() call to extract file’s 
meta-data 

• Then, uses open() call to open the file
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The Flaw?
• Code assumes FS is unchanged between stat()

and open() calls – Never assume anything…
• An attacker could change file referred to by path

in between stat() and open()
– From regular file to another kind
– Bypasses the check in the code!
– If check was a security check, attacker can subvert 

system security
• Time-Of-Check To Time-Of-Use (TOCTTOU) 

vulnerability
– Meaning of path changed from time it is checked 

(stat()) and time it is used (open())
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TOCTTOU Vulnerability
• In Unix, often occurs with filesystem calls 

because system calls are not atomic
• But, TOCTTOU vulnerabilities can arise 

anywhere there is mutable state shared 
between two or more entities

– Example: multi-threaded Java servlets and 
applications are at risk for TOCTTOU


