
1

Password Authentication &
Random Number Generation

Dawn Song
dawnsong@cs.berkeley.edu

2

Review
• PKI

• Authentication and Key Establishment Protocols

• Diffie-Hellman

3

Diffie-Hellman Key Agreement
• Public values: large prime p, generator g
• Alice picks secret random value a
• Bob picks secret random value b

• Protocol: generate shared key gab mod p

Alice Bob

ga

gb

4

Man-in-the-middle Attack for DH Key Agreement

Alice Bob

ga
gz

gb

gx

E

Attack:
• A & B may believe they share a session key,

but in fact, A & E share gax , B & E share gbz

• How to fix it?

5

Station-to-Station Protocol (STS)

Alice Bob

ga

gb, {sigSB(gb, ga)}K

{sigSA(ga, gb)}K

• sigSA , sigSB represent signatures of A & B
• Session key K = gab

6

Kerberos Protocol
• Symmetric-key setting

– Each user shares a symmetric key with key server
• A & S share KAS, B & S share KBS, L is the lifetime of the ticket, TA is

timestamp referring to A’s clock, na is a nonce generated by A
• 1 A S: A, B, na

• 2 S A: { KAB , na,L, B }KAS
, { KAB , A, L }KBS

• 3 A B: { KAB , A, L }KBS
, { A, TA }KAB

• 4 B A: { TA }KAB
• Encryption is not necessary for message 1
• Message 2 requires encryption, KAB needs to remain secret
• Encryption in message 3 & 4 proves knowledge of KAB

7

Password-Based Authentication
• Setting

– Alice and Bob know password P
– They want to establish common key based on shared secret P

• Approach 1
– K = H(P)
– Use K to encrypt / authenticate communication
– A B: {Message 1}K
– B A: {Message 2}K
– What’s wrong with this approach?

• Goal: prevent eavesdropper from performing a dictionary
attack to guess password

8

Simple Password Authentication

• Same setting as before
• Protocol

– K = H(P)
– Pick key K’ at random
– A B: { K’ }K
– B A: { “Terminal type: ” }K’

• Dictionary attack possible?
– Yes! Pick candidate password P
– Compute K, decrypt K’, and verify that

message matches “Terminal type: ”

9

EKE Basic Idea
• Observation: low entropy passwords enable dictionary attacks

• Countermeasures
– Encrypt random values with password-based key

– Public-key crypto establishes high-entropy session key

• Simple example
– K = H(P), choose random key pair KA , KA

-1

– A B: { KA }K

– B A: { { K’ }KA }K

– Using K’ as session key, dictionary attack possible?

10

EKE DH Protocol
• Large prime p, generator g
• K = H(P), A picks random a, B picks random b
• 1: A B: { ga }K
• 2: B A: { gb }K
• K’ = H(gab)
• Use K’ as session key for secure communication
• Dictionary attacks?

11

Summary
• EKE is very nice and useful protocol
• Many variants exist: SPEKE, SRP, PDM, …
• Unfortunately, extensive patents on EKE

and SPEKE prevented so far use of any of
these protocols

– Lucent owns EKE patent, demands exorbitant
licensing fees

– EKE patent: “Cryptographic protocol for
secure communications”, U.S. Patent
#5,241,599, filed 2 October 1991, issued 31
August 1993.

12

Administravia
• Hw1 out

• Start looking for group partner

13

Random Number Generation
• Many crypto protocols require parties to generate

random numbers
– Key generation
– Generating nonces

• How to generate random numbers?
– Step 1: how to generate truly random bits?
– Step 2: crypto methods to stretch a little bit of true

randomness into a large stream of pseudorandom
values that are indistinguishable from true random bits
(PRNG)

14

Case Study
• Random number generation is easy to get wrong
• Can you spot the problems in this example?

unsigned char key[16];

srand(time(null));
for (i=0; i<16; i++)

key[i] = rand() & 0xFF;

where

static unsigned int next = 0;
void srand(unsigned int seed) {

next = seed;
}

int rand(void) {
next = next * 1103515245 + 12345;
return next % 32768;

}

15

Real-world Examples
• X Windows “magic cookie” was generated using

rand()
• Netscape browsers generated SSL session keys

using time & process ID as seed (1995)
• Kerberos

– First discover to be similarly flawed
– 4 yrs later, discovered flaw with memset()

• PGP used return value from read() to seed its
PRNG, rather than the contents of buffer

• On-line poker site used insecure PRNG to
shuffle cards

• Debian Openssl package generates predictable
pseudorandom numbers

16

Lessons Learned
• Seeds must be unpredictable

• Algorithm for generating pseudorandom bits
must be secure

