
1

Privilege Separation

Dawn Song
dawnsong@cs.berkeley.edu

2

Part III OS Security
• Principles of OS Security

• State-of-the-art techniques & tools for OS 
Security

3

The Story Continues…
• Programs have vulnerabilities and may not find 

all of them ahead of time
• What can we do?

– Build security mechanisms to minimize damage
• Examples

– Priviledge separation to prevent priviledge escalation
– Isolation to protect other parts of the program and 

other programs
– Sandboxing to limit the damage it does to the system
– General concept: reference monitor



4

Operating System & Privilege
• OS’s role

– Interface between hardware & applications
– Manages resources
– Provide protection to hardware & applications

• Privilege
– Rights to perform certain operations

» E.g., writes to certain files & certain network operations

5

Principle of Least Privilege
• Give the user/program only the privilege it 

needs to get its task done
– One of the most important principles in systems 

security

• Why?
– Limit the damage when program misbehaves or is 

compromised

• What privileges should you give to your
– ssh server
– Video game program

6

Mangement of Privileges
• Example: File privileges

• Superuser/root mode
– Access to everything

• Windows privilege model
– Previously, most programs require superuser mode to 

install/run
» Consequence: most users log on as administrator

– Vista: User Account Control (UAC) 
» When user log on as a standard user, a token with basic 

privileges is assigned
» When user log on as an administrator, two tokens are assigned

• One with basic privileges, the other with root privileges
• Normal programs will be started with basic privileges
• Programs require root privileges will be prompted for user permission



7

Privileged Programs
• Privilege management is coarse-grained in 

today’s OS
– Root can do anything

• Many programs run as root
– Even though they only need to perform a small 

number of priviledged operations
• What’s the problem?

– Privileged programs are juicy targets for attackers
– By finding a bug in parts of the program that do not 

need privilege, attacker can gain root

8

What Can We Do?
• Drop privilege as soon as possible
• Ex: a network daemon only needs privilege to 

bind to low port # (<1024) at the beginning
– Solution?
– Drop privilege right after binding the port

• What benefit do we gain?
– Even if attacker finds a bug in later part of the code, 

can’t gain privilege any more
• How to drop privilege?

– Setuid programming in UNIX 

9

Unix file permission
• Each file has owner and group
• Permissions set by owner

– Read, write, execute
– Owner, group, other
– Represented by vector of

four octal values
• Only owner, root can change permissions

– This privilege cannot be delegated or shared
• Setid bits

– Talk about this in a sec

rwx rwxrwx-

ownr grp othr

setid



10

Effective user id (EUID) in UNIX

• Each process has three Ids  
– Real user ID       (RUID)

» same as the user ID of parent (unless changed)
» used to determine which user started the process 

– Effective user ID  (EUID)
» from set user ID bit on the file being executed, or sys call
» determines the permissions for process

• file access and port binding

– Saved user ID     (SUID)
» So previous EUID can be restored

• Real group ID, effective group ID, used similarly 

11

Operations on UIDs
• Root

– ID=0 for superuser root; can access any file
• Fork and Exec

– Inherit three IDs, except exec of file with setuid bit
• Setuid system calls  

– seteuid(newid) can set EUID to
» Real ID or saved ID, regardless of current EUID
» Any ID, if EUID=0

• Details are actually more complicated
– Several different calls: setuid, seteuid, setreuid

12

Setid bits on executable Unix file
• Three setid bits

– Setuid – set EUID of process to ID of file owner
– Setgid – set EGID of process to GID of file
– Sticky

» Off: if user has write permission on directory, can rename 
or remove files, even if not owner

» On: only file owner, directory owner, and root can rename 
or remove file in the directory

rwx rwxrwx-

ownr grp othr

setid



13

Drop Privilege

…;
…;
exec(  );

RUID 25 SetUID

program

…;
…;
i=getruid()
setuid(i);
…;
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--

file

-rw-r--r--

file

Owner 18

Owner 25

read/write

read/write

Owner 18

14

Administravia
• Photo submission due Oct 29

• Project 2

15

What Happens if you can’t drop privilege?

• In what example scenarios does this happen?
– A service loop
– E.g., ssh

• Solution?
– Privilege separation
– Identifying operations that need privileges
– Separate original code into master (priviledged) and 

slave (unprivileged)
• Example: ssh



16

Privilege Separation
• Process:

– Step 1: Identify which operations require privilege
– Step 2: rewrite programs into 2 or more parts

• Approach:
– Manual

» Have been done on security-critical programs, e.g., ssh
» Labor-intensive and may miss privileged operations

– Automatic
» Automatic inference of privileged operations using a few initial

annotations
» Automatic source-to-source rewriting

• Privileged code move into master
• Unprivileged code move into slave
• Stubs for inter communication

17

Automatic Privilege Separation
• Step 1: automatic inference of privileged data 

and operations
– Given some initial annotations of privileged data 

and/or operations, infer what other data/operations 
are privileged

– Idea: can be viewed as a form of static taint analysis
– Approach:

» Define qualifier _priv_ and _unpriv_
» Operations on _priv_ results in _priv_

int _priv_ a;
Int _priv_  f();
int b = f(a);
c= c+b;
g(c);

_priv_ b
_priv_ c
_priv_ g

18

Automatic Privilege Separation
• Step 2: automatic source-to-source 

transformation
– Move privileged data and code to Master
– For call to privileged functions, change the call site to 

a wrapper function which marshals the args on slave 
side and sends them to Master’s stub

– Similar stubs on returns for unprivileged return values



19

Privilege Separation at Runtime

Slave

Main 
Execution

W
rapper

Master

W
rapper

Privileged
Server

State
Store

Policy

RPC
Request

RPC
Reply

20

Summary: Privilege Separation
• Only master is privileged, usually much smaller
• Slave is unprivileged
• Bug in slave cannot harm master, cannot gain 

privilege
• How to protect master from a compromised 

slave?
– Fault isolation: e.g., running in different processes


