Privilege Separation

Dawn Song
dawnsong@cs.berkeley.edu

Part Il OS Security
* Principles of OS Security

 State-of-the-art techniques & tools for OS
Security

The Story Continues...

* Programs have vulnerabilities and may not find
all of them ahead of time
* What can we do?
—Build security mechanisms to minimize damage
* Examples
—Priviledge separation to prevent priviledge escalation

—Isolation to protect other parts of the program and
other programs

—Sandboxing to limit the damage it does to the system
—General concept: reference monitor

Operating System & Privilege

* OS’s role
—Interface between hardware & applications
—Manages resources
—Provide protection to hardware & applications

* Privilege
—Rights to perform certain operations
» E.g., writes to certain files & certain network operations

Principle of Least Privilege

* Give the user/program only the privilege it
needs to get its task done

—One of the most important principles in systems
security

* Why?
—Limit the damage when program misbehaves or is
compromised

* What privileges should you give to your
—ssh server
—Video game program

Mangement of Privileges

* Example: File privileges

* Superuser/root mode
— Access to everything

* Windows privilege model
— Previously, most programs require superuser mode to
install/run
» Consequence: most users log on as administrator
— Vista: User Account Control (UAC)
» When user log on as a standard user, a token with basic
privileges is assigned
» When user log on as an administrator, two tokens are assigned
+ One with basic privileges, the other with root privileges
« Normal programs will be started with basic privileges
« Programs require root privileges will be prompted for user permission

Privileged Programs

* Privilege management is coarse-grained in
today’s OS

—Root can do anything
* Many programs run as root

—Even though they only need to perform a small
number of priviledged operations

¢ What's the problem?
—Privileged programs are juicy targets for attackers

—By finding a bug in parts of the program that do not
need privilege, attacker can gain root

What Can We Do?

» Drop privilege as soon as possible
* Ex: a network daemon only needs privilege to
bind to low port # (<1024) at the beginning
—Solution?
—Drop privilege right after binding the port
e What benefit do we gain?
—Even if attacker finds a bug in later part of the code,
can’t gain privilege any more
* How to drop privilege?
—Setuid programming in UNIX

Unix file permission

« Each file has owner and group
* Permissions set by owner

—Read, write, execute setid

—Owner, group, other !

—Represented by vector of . \r_vva WX, fwx
four octal values ownr grp othr

* Only owner, root can change permissions
—This privilege cannot be delegated or shared
« Setid bits
—Talk about this in a sec

Effective user id (EUID) in UNIX

» Each process has three Ids
—Real user ID (RUID)
» same as the user ID of parent (unless changed)
» used to determine which user started the process
— Effective user ID (EUID)
» from set user ID bit on the file being executed, or sys call

» determines the permissions for process
« file access and port binding

—Saved user ID (SUID)
» So previous EUID can be restored

* Real group ID, effective group ID, used similarly

Operations on UIDs

¢ Root
—1D=0 for superuser root; can access any file
* Fork and Exec
—Inherit three IDs, except exec of file with setuid bit
* Setuid system calls
—seteuid(newid) can set EUID to
» Real ID or saved ID, regardless of current EUID
» Any ID, if EUID=0
« Details are actually more complicated
—Several different calls: setuid, seteuid, setreuid

Setid bits on executable Unix file

* Three setid bits
— Setuid — set EUID of process to ID of file owner
—Setgid — set EGID of process to GID of file
— Sticky

» Off: if user has write permission on directory, can rename
or remove files, even if not owner

» On: only file owner, directory owner, and root can rename
or remove file in the directory

setid

|

- WX Trwx rwx

ownr grp othr

Drop Privilege

program

!

e read/write [

RUID 25
EUID 18

i=getruid()

setuid(i);
read/write
file —

EUID 25

‘ RUID 25

13

Administravia

¢ Photo submission due Oct 29

* Project 2

What Happens if you can'’t drop privilege?

¢ In what example scenarios does this happen?
—A service loop

—-E.g., ssh
e Solution?
—Privilege separation
—ldentifying operations that need privileges

—Separate original code into master (priviledged) and
slave (unprivileged)

* Example: ssh

Privilege Separation

* Process:
— Step 1: Identify which operations require privilege
—Step 2: rewrite programs into 2 or more parts

» Approach:
—Manual
» Have been done on security-critical programs, e.g., ssh
» Labor-intensive and may miss privileged operations
—Automatic

» Automatic inference of privileged operations using a few initial
annotations
» Automatic source-to-source rewriting
« Privileged code move into master
« Unprivileged code move into slave
« Stubs for inter communication

Automatic Privilege Separation

» Step 1: automatic inference of privileged data
and operations
—Given some initial annotations of privileged data
and/or operations, infer what other data/operations
are privileged
—Idea: can be viewed as a form of static taint analysis
—Approach:
» Define qualifier _priv_and _unpriv_
» Operations on _priv_results in _priv_

int _priv_a;

Int _priv_ f(); X
intb = f(a); —priv_b
c=c+b; _priv_c
g(c); _priv_g

Automatic Privilege Separation

» Step 2: automatic source-to-source
transformation
—Move privileged data and code to Master

—For call to privileged functions, change the call site to
a wrapper function which marshals the args on slave
side and sends them to Master’s stub

—Similar stubs on returns for unprivileged return values

Privilege Separation at Runtime

Slave Master

State
RPC Store
Request

Privileged
Server

Main
Execution

RPC
Reply

Jaddeipn
Jaddeipn

i

Summary: Privilege Separation

Only master is privileged, usually much smaller
Slave is unprivileged
Bug in slave cannot harm master, cannot gain
privilege

How to protect master from a compromised
slave?

—Fault isolation: e.g., running in different processes

