Sandboxing and Isolation

Dawn Song
dawnsong@cs.berkeley.edu

Review

» Preventing privilege escalation
—Drop privileges asap
—Privilege separation

Sandboxing

« Building a controled environment for untrusted
third-party applications
—Can only access the given resources
—Ensure eg)glicati_on does not deviate from pre-
approved behavior
* Examples
—Filesystem isolation
—Disk quotas
—1/O rate limiting
—Memory limits
—CPU quotas
—Network control and rate limiting

Different Examples

 chroot, BSD jail commands
—Only for file permissions
—Coarse grained
—http://fen.wikipedia.org/wiki/Jail (computer security)
» System call interposition
—More general
» Java virtual machine
—More fine grained
* Virtual machine
—Whole system

System Call Interposition

» Malicious programs usually need to make system calls to
do harm to the system
» System call interface is a natual place to place security
checks & enforce security policies
* What kind of policies do we want to enforce?
— A process cannot open certain files
— A process may have restricted network access
- f_\lprocess may not send network packets after reading certain
iles
* Policy can be written as
— Whethre a single action is allowed
— Whether a sequence of action is allowed
— An automata

How to Enforce a Policy?

Application

[1

System calll I

0S

* Intercept system calls
 Information passed on to policy checker before system
call is processed
» Policy checker
— In kernel
— User space
» Be careful with race conditions

Sandboxing Case Study: iPhone & Android

« Miller attacks on iPhone & Android

« Security architecture & consequences

iPhone design weakness & consequences

* Security design weakness:
All processes of interest run with administrative privileges
* Consequences: iPhone attack (Miller Jul 2007)
iPhone Safari downloads malicious web page
— Arbitrary code is run with administrative privileges
— Can read SMS log, address book, call history, other data
— Can perform physical actions on the phone.
» system sound and vibrate the phone for a second
» could dial phone numbers, send text messages, or record
audio (as a bugging device)
— Can transmit any collected data over network to attacker

See http://www.securityevaluators.com/iphone/

Android

* Operating system for T-Mobile Google phone
—Open Handset Alliance

* Miller’s attack: Oct 24, 2008
—Exploit an unpatched vulnerability
—Surfing malicious website can exploit browser

* Consequences
— Get full privilege of the browser
» E.g., access to cookies, keystrokes entered in browser

—However, can’t do other things such as dial the phone
directly

—Contrast to iPhone

Android Security Architecture

« Each application runs in its own process
— Its own Java Virtual Machine

« Application signing
— Each application (.apk files) is signed

« Sandboxing

— Each application package (.apk file) installed is given unique
userlD

— Can only access to its own data
— Default setting: no other permission

— Explicitly declare permission needed at install time and get
approval from user

— Grant data access permission to other processes
— http://code.google.com/android/devel/security.html

Challenges for Sandboxing

* Complete mediation

« Tradeoff between usability/convenience
and security

Administravia

* Midterm Statistics:
Mean: 34.29
Standard deviation: 7.77
1st quartile: 28.38
2nd quartile (median): 34.25
3rd quartile: 39.75

Extra Credit:

Mean: 1.48

Standard deviation: 1.76
1st quartile: 0

2nd quartile (median): 1
3rd quartile: 2

Administravia

 Slides format?
—3or 6slides a page

e Project 2

Fault Isolation

 Fault Isolation
—The fault in one program or one part of the code cannot
harm other programs or other parts of the code

—Very important for security in running untrusted or
untrustworthy code

—“Harmness”

» E.g., read/write memory it's not supposed to
* Hardware fault isolation

—Processes

—What properties/protection does process provide?
» Memory protection
» Other resources such as file handles are separated as well

—Works well for some applications

Disadvantage of Hardware Fault Isolation

* Process inter communication is expensive
—Add significant performance overhead if often

* Why is process inter communication expensive?
—Trap from user to kernel back to user

— Context switch is expensive
» Flush TLB, cache miss, etc.

—Often 2-3 orders of magnitude more expensive than
normal procedure call

How to Address This?

» Software Fault Isolation (SFI)

* Question:
how to protect a piece of code from harming
other parts of the program even though they run
in the same address space?

Motivation

* Today’s systems are designed to be extensible
—OS kernel module/drivers

e Extension accounts for over x% of Linux kernel
code

—Xx=70[Chou et. al.]
* Windows XP desktops

—Over 35,000 drivers with over 120,000 versions [Swift
et.al]

* Drivers cause 85% of reported failures in
Windows XP [Swift et. al.]

Desired Properties of Extensible Architecture

« Efficiency

» Security model: extension code may be
—Malicious
—Buggy

* Protection

—Extension should not read and/or write to certain
regions in host € Isolation, sandbox
» Do no harm to others
» Why do we care about Read?
—Other more sophisticated security policies

—Need more efficient mechanisms than hardware fault
isolation

Software Fault Isolation

» Idea: insert code in extension code to ensure
certain security properties
* SFI [Wahbe et. al. 93]
— Software fault isolation

—Security property to guarantee:
Extension code only writes and jumps to dedicated
data and code region

—How to ensure this?

