
1

Sandboxing and Isolation

Dawn Song
dawnsong@cs.berkeley.edu

2

Review
• Preventing privilege escalation

– Drop privileges asap
– Privilege separation

3

Sandboxing
• Building a controled environment for untrusted

third-party applications
– Can only access the given resources
– Ensure application does not deviate from pre-

approved behavior
• Examples

– Filesystem isolation
– Disk quotas
– I/O rate limiting
– Memory limits
– CPU quotas
– Network control and rate limiting

4

Different Examples
• chroot, BSD jail commands

– Only for file permissions
– Coarse grained
– http://en.wikipedia.org/wiki/Jail_(computer_security)

• System call interposition
– More general

• Java virtual machine
– More fine grained

• Virtual machine
– Whole system

5

System Call Interposition
• Malicious programs usually need to make system calls to

do harm to the system
• System call interface is a natual place to place security

checks & enforce security policies
• What kind of policies do we want to enforce?

– A process cannot open certain files
– A process may have restricted network access
– A process may not send network packets after reading certain

files
• Policy can be written as

– Whethre a single action is allowed
– Whether a sequence of action is allowed
– An automata

6

How to Enforce a Policy?

• Intercept system calls
• Information passed on to policy checker before system

call is processed
• Policy checker

– In kernel
– User space

» Be careful with race conditions

Application

System call

Policy checker

Policy checker

OS

7

Sandboxing Case Study: iPhone & Android

• Miller attacks on iPhone & Android

• Security architecture & consequences

8

iPhone design weakness & consequences

• Security design weakness:
All processes of interest run with administrative privileges

• Consequences: iPhone attack (Miller Jul 2007)
iPhone Safari downloads malicious web page

– Arbitrary code is run with administrative privileges
– Can read SMS log, address book, call history, other data
– Can perform physical actions on the phone.

» system sound and vibrate the phone for a second
» could dial phone numbers, send text messages, or record
audio (as a bugging device)

– Can transmit any collected data over network to attacker

See http://www.securityevaluators.com/iphone/

8

9

Android
• Operating system for T-Mobile Google phone

– Open Handset Alliance
• Miller’s attack: Oct 24, 2008

– Exploit an unpatched vulnerability
– Surfing malicious website can exploit browser

• Consequences
– Get full privilege of the browser

» E.g., access to cookies, keystrokes entered in browser
– However, can’t do other things such as dial the phone

directly
– Contrast to iPhone

10

Android Security Architecture
• Each application runs in its own process

– Its own Java Virtual Machine
• Application signing

– Each application (.apk files) is signed
• Sandboxing

– Each application package (.apk file) installed is given unique
userID

– Can only access to its own data
– Default setting: no other permission
– Explicitly declare permission needed at install time and get

approval from user
– Grant data access permission to other processes
– http://code.google.com/android/devel/security.html

11

Challenges for Sandboxing
• Complete mediation

• Tradeoff between usability/convenience
and security

12

Administravia
• Midterm Statistics:

Mean: 34.29
Standard deviation: 7.77
1st quartile: 28.38
2nd quartile (median): 34.25
3rd quartile: 39.75

Extra Credit:
Mean: 1.48
Standard deviation: 1.76
1st quartile: 0
2nd quartile (median): 1
3rd quartile: 2

13

Administravia
• Slides format?

– 3 or 6 slides a page

• Project 2

14

Fault Isolation
• Fault Isolation

– The fault in one program or one part of the code cannot
harm other programs or other parts of the code

– Very important for security in running untrusted or
untrustworthy code

– “Harmness”
» E.g., read/write memory it’s not supposed to

• Hardware fault isolation
– Processes
– What properties/protection does process provide?

» Memory protection
» Other resources such as file handles are separated as well

– Works well for some applications

15

Disadvantage of Hardware Fault Isolation

• Process inter communication is expensive
– Add significant performance overhead if often

• Why is process inter communication expensive?
– Trap from user to kernel back to user
– Context switch is expensive

» Flush TLB, cache miss, etc.
– Often 2-3 orders of magnitude more expensive than

normal procedure call

16

How to Address This?
• Software Fault Isolation (SFI)
• Question:

how to protect a piece of code from harming
other parts of the program even though they run
in the same address space?

17

Motivation
• Today’s systems are designed to be extensible

– OS kernel module/drivers

• Extension accounts for over x% of Linux kernel
code

– x=70 [Chou et. al.]
• Windows XP desktops

– Over 35,000 drivers with over 120,000 versions [Swift
et. al.]

• Drivers cause 85% of reported failures in
Windows XP [Swift et. al.]

18

Desired Properties of Extensible Architecture

• Efficiency
• Security model: extension code may be

– Malicious
– Buggy

• Protection
– Extension should not read and/or write to certain

regions in host Isolation, sandbox
» Do no harm to others
» Why do we care about Read?

– Other more sophisticated security policies
– Need more efficient mechanisms than hardware fault

isolation

19

Software Fault Isolation
• Idea: insert code in extension code to ensure

certain security properties
• SFI [Wahbe et. al. 93]

– Software fault isolation
– Security property to guarantee:

Extension code only writes and jumps to dedicated
data and code region

– How to ensure this?

