
CS 161 Computer Security
Fall 2008 Dawn Song Notes 3

1 Modes of Operations:
A symmetric encryption scheme allows Alice and Bob to privately exchange a sequence of messages in the
presence of an eavesdropper Eve. We will assume that Alice and Bob share a random secret key K. How
Alice and Bob managed to share a key without the adversary’s knowledge is not going to be our concern
here. The encryption scheme consists of an encryption algorithm E that takes as input the key K and the
plaintext message M ∈ {0,1}∗, and outputs the ciphertext. The decryption algorithm D takes as input the
key and the ciphertext and reconstructs the plaintext message M. In general the encryption algorithm builds
upon a block cipher to accomplish two goals: one is to show how to encrypt arbitrarily long messages using
a fixed length block cipher. The other is to make sure that if the same message is sent twice, the ciphertext
in the two transmissions is not the same. The encryption algorithm to achieve these goals can either be
randomized or stateful - it either flips coins during its execution, or its operation depends upon some state
information. The decryption algorithm is neither randomized nor stateful.

ECB Mode (Electronic Code Book): In this mode the plaintext M is simply broken into n bit blocks
M1, . . .Ml , and each block is encoded using the block cipher: Ci = EK(Mi). The ciphertext is just a con-
catenation of these individual blocks: C = C1 ·C2 · · ·Cl . This scheme is adequate for simple tasks such as
encrypting PINs for cash machine systems. However any redundancy in the blocks will show through and
allow the eavesdropper to deduce information about the plaintext. We will discuss this in more detail after
formalizing the notion of the security of a symmetric encryption scheme below.

CBC Mode (Cipher Block Chaining): This is a popular mode for commercial applications. A random
n bit string, the initial vector or IV is selected. Define C(0) = EK(IV ). The ith encrypted block Ci =
EK(Ci−1 ⊕Mi). The ciphertext is the concatenation of the initial vector and these individual blocks: C =
IV ·C1 ·C2 · · ·Cl . The CBC mode does provide strong security guarantees on the privacy of the plaintext
message. This is formalized later in this lecture and explored further in the homework.

OFB Mode (Output Feedback Mode): In this mode, the initial vector IV is repeatedly encrypted to obtain a
set of keys Ki as follows: K0 = IV and Ki = EK(Ki−1). These keys Ki are now used as keys for a one-time
pad, so that Ci = Ki⊕Mi. The ciphertext is the concatenation of the initial vector and these individual blocks:
C = IV ·C1 ·C2 · · ·Cl . This scheme suffers from an important weakness — the message is malleable. i.e.
suppose that the adversary happens to know that the jth block of the message specifies the amount of money
being transferred to his account from the bank and is 100. Since he knows both M j and C j, he can determine
K j. He can then substitute any n bit block in place of M j and get a new ciphertext where the 100 is replaced
by any amount of his choice.

Counter Encryption: One drawback of the CBC and OFB mode is that successive blocks must be en-
crypted sequentially. For high speed applications it is useful to parallelize these computations. This is
easily achieved by encrypting a counter initialized to IV to obrain a set of keys Ki = EK(IV + i). As before
the block Mi is then encrypted simply as Ki⊕Mi.

CS 161, Fall 2008, Notes 3 1



2 One-way function
A one-way function is a fundamental notion in cryptography. It is a function on n bits such that given x it is
easy to compute f (x) but on input f (x) it is hard to recover x (or any other preimage of f (x)). One of the
fundamental sources of one-way functions is the remarkable contrast between multiplication, which is fast,
and factoring, for which we know only exponential time algorithms. The simplest procedures for factoring
a number require an enormous effort if that number is large. Given a number N, one can try dividing it
by 1,2, . . . ,N − 1 in turn, and returning all the factors that emerge. This algorithm requires N − 1 steps.
If N is in binary representation, as is customary, then its length is n = dlog2 Ne bits, which means that the
running time is proportional to 2n, exponential in the size of the input. One clever simplification is to restrict
the possible candidates to just 2,3, . . . ,

√
N, and for each factor f found in this shortened list, to also note

the corresponding factor N/ f . As justification, witness that if N = ab for some numbers a and b, then at
most one of these numbers can be more than

√
N. The modified procedure requires only

√
N steps, which

is proportional to 2n/2 but is still exponential. Factoring is one of the most intensely studied problems by
algorithmists and number theorists. The best algorithms for this problem take 2cn1/3log2/3n steps. The current
record is the factoring of RSA576, a 576 bit challenge by RSA Inc. The factoring of 1024 bit numbers is
well beyond the capability of current algorithms.

The security of the RSA public key cryptosystem is based on this stark contrast between the hardness of
factoring and multiplication.

3 Outline of RSA
In the RSA cryptosystem, each user selects a public key (N,e), where N is a product of two large primes P
and Q, and e is the encryption exponent (usually e = 3). P and Q are unknown to the rest of the World, and are
used by the owner of the key (say Alice), to compute the private key (N,d), where ed = 1 mod(P−1)(Q−1).
Even though d is uniquely defined by the public key (N,e), actually recovering d from (N,e) is as hard as
factoring N. i.e. given d there is an efficient algorithm to recover P and Q. The encryption function is
a permutation on {0,1, . . . ,N − 1}. It is given by E(m) = me mod N. The decryption function is D(c) =
cd mod N, with the property that D(E(m)) = m. i.e. for every m, med = m mod N.

Before we do that let us make some observations about RSA. First, what makes public key cryptography
counter-intuitive is the seeming symmetry between the recepient of the message, Alice, and the eavesdrop-
per, Eve. After all, the ciphertext me mod N together with the public key (N,e) uniquely specifies the
plaintext m. In principle one could try computing xe mod N for all 0 ≤ x ≤ N − 1 until one hits upon the
ciphertext. However this is prohibitively expensive. RSA breaks the symmetry between Alice and Eve be-
cause RSA encryption is actually a trapdoor function: it is easy to compute, and hard to invert, unless you
have knowledge of d (the hidden trapdoor). Then it is easy to invert.

Secondly, public key encryption schemes including RSA are substantially slower than symmetric-key en-
cryption algorithms such as DES and AES. For this reason, public key encryption is typically used to estab-
lish private session keys between two parties who then communicate using a symmetric encryption scheme.
Thus public key encryption is used to solve the key distribution problem in symmetric encryption schemes,
where if n people wish to communicate it is necessary to establish

(n
2

)
keys. For a public key scheme they

only need n keys.

CS 161, Fall 2008, Notes 3 2



4 Algorithms for modular arithmetic
We start by considering two number-theoretic problems – modular exponentiation and greatest common
divisor – for which the most obvious algorithms take exponentially long, but which can be solved in poly-
nomial time with some ingenuity. The choice of algorithm makes all the difference.

4.1 Simple modular arithmetic
Two n-bit integers can be added, multiplied, or divided by mimicking the usual manual techniques which
are taught in elementary school. For addition, the resulting algorithm takes a constant amount of time to
produce each bit of the answer, since each such step only requires dealing with three bits – two input bits
and a carry – and anything involving a constant number of bits takes O(1) time. The overall time is therefore
O(n), or linear. Similarly, multiplication and division take O(n2), or quadratic, time.

Modular arithmetic can be implemented naturally using these primitives. To compute a mod s, simply
return the remainder upon dividing a by s. By reducing all inputs and answers modulo s, modular addition,
subtraction, and multiplication are easily performed, and all take time O(log2 s) since the numbers involved
never grow beyond s and therefore have size at most dlog2 se.

4.2 Modular exponentiation
Modular exponentiation consists of computing ab mod s. One way to do this is to repeatedly multiply by a
modulo s, generating the sequence of intermediate products ai mod s, i = 1, . . . ,b. They each take O(log2 s)
time to compute, and so the overall running time to compute the b−1 products is O(b log2s), exponential
in the size of b.

A repeated squaring procedure for modular exponentiation.

function ModExp1(a,b,s)
Input: A modulus s, a positive integer a < s and a positive exponent b

Let bn−1 · · ·b1b0 be the binary form of b, where n = dlog2 be
Output: ab mod s

// Compute the powers pi = a2i
mod s.

p0 = a mod s
for i = 1 to n−1

pi = p2
i−1 mod s

// Multiply together a subset of these powers.
r = 1
for i = 0 to n−1
if bi = 1 then r = rpi mod s

return r

The key to an efficient algorithm is to notice that the exponent of a number a j can be doubled quickly, by
multiplying the number by itself. Starting with a and squaring repeatedly, we get the powers a1,a2,a4,a8, . . . ,a2blog2 bc

,
all modulo s. Each takes just O(log2 s) time to compute, and they are all we need to determine ab mod s: we

CS 161, Fall 2008, Notes 3 3



just multiply together an appropriate subset of them, those corresponding to ones in the binary representation
of b. For instance,

a25 = a110012 = a100002 ·a10002 ·a12 = a16 ·a8 ·a1.

This repeated squaring algorithm is shown above. The overall running time is O(log2 s logb), cubic in
the input size when the exponent b is large. This explains the use of encryption exponent e = 3 in the
RSA cryptosystem — this way encryption can be carried out in quadratic time. For obvious reasons the
decryption exponenent d cannot be selected to be small. Thus decryption takes cubic time.

4.3 Modular division and Euclid’s algorithm for greatest common divisor
Let us now turn to the question of how the decryption exponent d is selected. To understand this we must
first understand how to divide modulo N. In real arithmetic we can divide by any number as long as it is
not 0. Division in modular arithmetic is slightly more complicated, but the final rule says that it is possible
to divide by a mod s whenever gcd(a,s) = 1. In particular, the reciprocal of a mod s exists (i.e. b such that
ab = 1 mod s) iff gcd(a,b) = 1. To see why this is so, and to get an efficient algorithm for division we must
examine one of the oldest algorithms: it computes the greatest common divisor of two integers a and b: the
largest integer which divides both of them. The naive scheme of checking all numbers less than min(a,b)
is exponential time and therefore hopelessly slow. Instead we will rely upon a simple rule discovered in
ancient Greece by the eminent mathematician Euclid, which will serve as the basis of an efficient recursive
algorithm.

Lemma If a > b then gcd(a,b) = gcd(a mod b,b).

Proof: Actually Euclid noticed the slightly simpler rule gcd(a,b) = gcd(a−b,b) from which the one above
can be derived by the repeated subtraction of b from a.

Why is gcd(a,b) = gcd(a−b,b)? Well, any integer which divides both a and b must also divide both a−b
and b, so gcd(a,b) ≤ gcd(a− b,b). And similarly, any integer which divides both a− b and b must also
divide both a and b, so gcd(a,b)≥ gcd(a−b,b). 2

How long does the Euclid algorithm (below) take? We will see that on each successive recursive call one
of its arguments gets reduced to at most half its value while the other remains unchanged. Therefore there
can be at most blog2 ac+ blog2 bc+1 recursive calls before one of the arguments gets reduced to zero. The
following lemma summarizes this key observation.

Lemma If a ≥ b then a mod b ≤ a/2.

Proof: Consider two possible ranges for the value of b. Either b ≤ a/2, in which case a mod b < b ≤ a/2,
or b > a/2, in which case a mod b = a−b ≤ a/2. 2

For an input size of n = dlog2 ae+ dlog2 be, there are at most n +1 recursive calls, and so the total running
time is O(n3).

Euclid’s algorithm for finding the greatest common divisor of two numbers.

function Euclid(a,b)
Input: Two positive integers a,b with a ≥ b
Output: gcd(a,b)

if b = 0 then return a
return Euclid(b,a mod b)

CS 161, Fall 2008, Notes 3 4



4.4 An extension of Euclid’s algorithm
It turns out that gcd(a,b) can always be expressed as an integer linear combination of a and b, that is, in the
form ax +by where x,y are integers. It is not immediately obvious how one would calculate such x,y, even
given exponential time, but in fact they can be found quickly by incorporating the following observation into
the recursion in Euclid’s algorithm.

Lemma: If gcd(a mod b,b) is an integer linear combination of a mod b and b, then gcd(a,b) is an integer
linear combination of a and b.

Proof: Write a in the form bq + r, where r = a mod b. By hypothesis, there are some integers x′,y′ for
which gcd(a mod b,b) = bx′+ ry′. Let x = y′ and y = x′−qy′; these are also integers and

ax+by = ay′+b(x′−qy′) = bx′+(a−bq)y′ = bx′+ ry′ = gcd(a mod b,b) = gcd(a,b),

where the final equality is simply Euclid’s rule. 2

The Extended-Euclid algorithm given below directly implements this inductive reasoning. One way
to prove its correctness in detail (you should try this) is to use induction on max(a,b).

Theorem: For any positive integers a,b, the Extended-Euclid algorithm returns integers x,y such that
ax+by = gcd(a,b).

A simple extension of Euclid’s algorithm.

function Extended-Euclid(a,b)
Input: Two positive integers a,b with a ≥ b
Output: Integers x,y,d such that d = gcd(a,b) and ax+by = d

if b = 0 then return (1,0,a)
by division find q,r such that a = bq+ r
(x′,y′,d) = Extended-Euclid(b,r)
return (x = y′,y = x′−qy′,d)

This extension of Euclid’s algorithm is the key to dividing in the modular world. In real arithmetic every
a 6= 0 has a multiplicative inverse 1/a, and dividing is the same as multiplying by this inverse. In modular
arithmetic, a has a multiplicative inverse mods iff gcd(a,s) = 1. By the extended Euclid algorithm, if
gcd(a,s) = 1, then there are integers x,y such that ax + sy = 1. Reducing both sides of this sum modulo s,
we get ax ≡ 1 mod s. In short: x is the multiplicative inverse of a modulo s, and we have a quick way of
finding it.

Corollary: If a is relatively prime to s > a, then a has a multiplicative inverse modulo s, and this inverse
can be found in time O(log3 s).

Returning to the question of how the decryption exponent d is selected. It turns out that d is the multiplicative
inverse of the encryption exponent e mod (P−1)(Q−1). By the above discussion such a d exists and can
be efficiently computed iff gcd(e,(P−1)(Q−1)) = 1. Since for efficiency reasons we wish to choose e = 3,
it follows that we must pick P,Q each congruent to 2 mod 3. d is then computed by using the Extended
Euclid algorithm.

CS 161, Fall 2008, Notes 3 5


